Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Nature ; 598(7880): 342-347, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34464958

RESUMO

SARS-CoV-2 infection-which involves both cell attachment and membrane fusion-relies on the angiotensin-converting enzyme 2 (ACE2) receptor, which is paradoxically found at low levels in the respiratory tract1-3, suggesting that there may be additional mechanisms facilitating infection. Here we show that C-type lectin receptors, DC-SIGN, L-SIGN and the sialic acid-binding immunoglobulin-like lectin 1 (SIGLEC1) function as attachment receptors by enhancing ACE2-mediated infection and modulating the neutralizing activity of different classes of spike-specific antibodies. Antibodies to the amino-terminal domain or to the conserved site at the base of the receptor-binding domain, while poorly neutralizing infection of ACE2-overexpressing cells, effectively block lectin-facilitated infection. Conversely, antibodies to the receptor binding motif, while potently neutralizing infection of ACE2-overexpressing cells, poorly neutralize infection of cells expressing DC-SIGN or L-SIGN and trigger fusogenic rearrangement of the spike, promoting cell-to-cell fusion. Collectively, these findings identify a lectin-dependent pathway that enhances ACE2-dependent infection by SARS-CoV-2 and reveal distinct mechanisms of neutralization by different classes of spike-specific antibodies.


Assuntos
Anticorpos Neutralizantes/imunologia , Lectinas/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Fusão Celular , Linhagem Celular , Cricetinae , Feminino , Humanos , Lectinas/imunologia , Lectinas Tipo C/metabolismo , Fusão de Membrana , Receptores de Superfície Celular/metabolismo , SARS-CoV-2/imunologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
J Immunol ; 212(8): 1307-1318, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38416036

RESUMO

Plitidepsin is a host-targeted compound known for inducing a strong anti-SARS-CoV-2 activity, as well as for having the capacity of reducing lung inflammation. Because IL-6 is one of the main cytokines involved in acute respiratory distress syndrome, the effect of plitidepsin in IL-6 secretion in different in vitro and in vivo experimental models was studied. A strong plitidepsin-mediated reduction of IL-6 was found in human monocyte-derived macrophages exposed to nonproductive SARS-CoV-2. In resiquimod (a ligand of TLR7/8)-stimulated THP1 human monocytes, plitidepsin-mediated reductions of IL-6 mRNA and IL-6 levels were also noticed. Additionally, although resiquimod-induced binding to DNA of NF-κB family members was unaffected by plitidepsin, a decrease in the regulated transcription by NF-κB (a key transcription factor involved in the inflammatory cascade) was observed. Furthermore, the phosphorylation of p65 that is required for full transcriptional NF-κB activity was significantly reduced by plitidepsin. Moreover, decreases of IL-6 levels and other proinflammatory cytokines were also seen in either SARS-CoV-2 or H1N1 influenza virus-infected mice, which were treated at low enough plitidepsin doses to not induce antiviral effects. In summary, plitidepsin is a promising therapeutic agent for the treatment of viral infections, not only because of its host-targeted antiviral effect, but also for its immunomodulatory effect, both of which were evidenced in vitro and in vivo by the decrease of proinflammatory cytokines.


Assuntos
Depsipeptídeos , Vírus da Influenza A Subtipo H1N1 , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Interleucina-6/farmacologia , Antivirais/farmacologia , Fatores Imunológicos/farmacologia , Citocinas/metabolismo , SARS-CoV-2/metabolismo
3.
Emerg Infect Dis ; 30(6): 1253-1257, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782139

RESUMO

We conducted a serologic and molecular study to assess exposure of captive nonhuman primates (NHPs) to SARS-CoV-2 in Spain during the 2020-2023 COVID-19 pandemic. We found limited exposure of NHPs to SARS-CoV-2. Biosafety measures must be strictly maintained to avoid SARS-CoV-2 reverse-zoonotic transmission in the human-NHP interface.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Espanha/epidemiologia , COVID-19/epidemiologia , COVID-19/veterinária , COVID-19/transmissão , COVID-19/prevenção & controle , Primatas , Humanos , Anticorpos Antivirais/sangue , Animais de Zoológico/virologia
4.
Emerg Infect Dis ; 29(3): 585-589, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823022

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) clade B viruses are found in camelids and humans in the Middle East, but clade C viruses are not. We provide experimental evidence for extended shedding of MERS-CoV clade B viruses in llamas, which might explain why they outcompete clade C strains in the Arabian Peninsula.


Assuntos
Camelídeos Americanos , Infecções por Coronavirus , Herpesvirus Cercopitecino 1 , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , Eliminação de Partículas Virais , Camelus
5.
PLoS Pathog ; 17(5): e1009229, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34029358

RESUMO

While MERS-CoV (Middle East respiratory syndrome Coronavirus) provokes a lethal disease in humans, camelids, the main virus reservoir, are asymptomatic carriers, suggesting a crucial role for innate immune responses in controlling the infection. Experimentally infected camelids clear infectious virus within one week and mount an effective adaptive immune response. Here, transcription of immune response genes was monitored in the respiratory tract of MERS-CoV infected alpacas. Concomitant to the peak of infection, occurring at 2 days post inoculation (dpi), type I and III interferons (IFNs) were maximally transcribed only in the nasal mucosa of alpacas, while interferon stimulated genes (ISGs) were induced along the whole respiratory tract. Simultaneous to mild focal infiltration of leukocytes in nasal mucosa and submucosa, upregulation of the anti-inflammatory cytokine IL10 and dampened transcription of pro-inflammatory genes under NF-κB control were observed. In the lung, early (1 dpi) transcription of chemokines (CCL2 and CCL3) correlated with a transient accumulation of mainly mononuclear leukocytes. A tight regulation of IFNs in lungs with expression of ISGs and controlled inflammatory responses, might contribute to virus clearance without causing tissue damage. Thus, the nasal mucosa, the main target of MERS-CoV in camelids, seems central in driving an efficient innate immune response based on triggering ISGs as well as the dual anti-inflammatory effects of type III IFNs and IL10.


Assuntos
Camelídeos Americanos , Infecções por Coronavirus/imunologia , Interferon Tipo I/metabolismo , Interferons/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Camelídeos Americanos/imunologia , Camelídeos Americanos/metabolismo , Camelídeos Americanos/virologia , Chlorocebus aethiops , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Reservatórios de Doenças/veterinária , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica , Imunidade Inata/fisiologia , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/veterinária , Inflamação/virologia , Interferon Tipo I/genética , Interferon Tipo I/farmacologia , Interferons/genética , Interferons/farmacologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Mucosa Nasal/virologia , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Células Vero , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Interferon lambda
6.
Proc Natl Acad Sci U S A ; 117(40): 24790-24793, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32948692

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, is considered a zoonotic pathogen mainly transmitted human to human. Few reports indicate that pets may be exposed to the virus. The present report describes a cat suffering from severe respiratory distress and thrombocytopenia living with a family with several members affected by COVID-19. Clinical signs of the cat prompted humanitarian euthanasia and a detailed postmortem investigation to assess whether a COVID-19-like disease was causing the condition. Necropsy results showed the animal suffered from feline hypertrophic cardiomyopathy and severe pulmonary edema and thrombosis. SARS-CoV-2 RNA was only detected in nasal swab, nasal turbinates, and mesenteric lymph node, but no evidence of histopathological lesions compatible with a viral infection were detected. The cat seroconverted against SARS-CoV-2, further evidencing a productive infection in this animal. We conclude that the animal had a subclinical SARS-CoV-2 infection concomitant to an unrelated cardiomyopathy that led to euthanasia.


Assuntos
Betacoronavirus/isolamento & purificação , Cardiomiopatia Hipertrófica/veterinária , Infecções por Coronavirus/veterinária , Pandemias/veterinária , Pneumonia Viral/veterinária , Animais , COVID-19 , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/virologia , Gatos , Infecções por Coronavirus/complicações , Infecções por Coronavirus/patologia , Evolução Fatal , Humanos , Achados Incidentais , Pneumonia Viral/complicações , Pneumonia Viral/patologia , SARS-CoV-2
7.
J Infect Dis ; 225(4): 587-592, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34904659

RESUMO

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since 2019 has made mask-wearing, physical distancing, hygiene, and disinfection complementary measures to control virus transmission. Especially for health facilities, we evaluated the efficacy of an UV-C autonomous robot to inactivate SARS-CoV-2 desiccated on potentially contaminated surfaces. ASSUM (autonomous sanitary sterilization ultraviolet machine) robot was used in an experimental box simulating a hospital intensive care unit room. Desiccated SARS-CoV-2 samples were exposed to UV-C in 2 independent runs of 5, 12, and 20 minutes. Residual virus was eluted from surfaces and viral titration was carried out in Vero E6 cells. ASSUM inactivated SARS-CoV-2 by ≥ 99.91% to ≥ 99.99% titer reduction with 12 minutes or longer of UV-C exposure and onwards and a minimum distance of 100cm between the device and the SARS-CoV-2 desiccated samples. This study demonstrates that ASSUM UV-C device is able to inactivate SARS-CoV-2 within a few minutes.


Assuntos
COVID-19 , Robótica , SARS-CoV-2/efeitos da radiação , Esterilização/métodos , Raios Ultravioleta , Inativação de Vírus/efeitos da radiação , COVID-19/prevenção & controle , Hospitais , Humanos
8.
Vet Res ; 53(1): 67, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056449

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) poses a serious threat to public health. Here, we established an ex vivo alpaca tracheal explant (ATE) model using an air-liquid interface culture system to gain insights into MERS-CoV infection in the camelid lower respiratory tract. ATE can be infected by MERS-CoV, being 103 TCID50/mL the minimum viral dosage required to establish a productive infection. IFNs and antiviral ISGs were not induced in ATE cultures in response to MERS-CoV infection, strongly suggesting that ISGs expression observed in vivo is rather a consequence of the IFN induction occurring in the nasal mucosa of camelids.


Assuntos
Camelídeos Americanos , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Antivirais , Brônquios , Infecções por Coronavirus/veterinária , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia
9.
Vet Pathol ; 59(4): 546-555, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35001773

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is the cause of a severe respiratory disease with a high case fatality rate in humans. Since its emergence in mid-2012, 2578 laboratory-confirmed cases in 27 countries have been reported by the World Health Organization, leading to 888 known deaths due to the disease and related complications. Dromedary camels are considered the major reservoir host for this virus leading to zoonotic infection in humans. Dromedary camels, llamas, and alpacas are susceptible to MERS-CoV, developing a mild-to-moderate upper respiratory tract infection characterized by epithelial hyperplasia as well as infiltration of neutrophils, lymphocytes, and some macrophages within epithelium, lamina propria, in association with abundant viral antigen. The very mild lesions in the lower respiratory tract of these camelids correlate with absence of overt illness following MERS-CoV infection. Unfortunately, there is no approved antiviral treatment or vaccine for MERS-CoV infection in humans. Thus, there is an urgent need to develop intervention strategies in camelids, such as vaccination, to minimize virus spillover to humans. Therefore, the development of camelid models of MERS-CoV infection is key not only to assess vaccine prototypes but also to understand the biologic mechanisms by which the infection can be naturally controlled in these reservoir species. This review summarizes information on virus-induced pathological changes, pathogenesis, viral epidemiology, and control strategies in camelids, as the intermediate hosts and primary source of MERS-CoV infection in humans.


Assuntos
Camelídeos Americanos , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Camelus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Zoonoses
10.
Vet Pathol ; 59(4): 613-626, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34955064

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes respiratory disease, but it can also affect other organs including the central nervous system. Several animal models have been developed to address different key questions related to Coronavirus Disease 2019 (COVID-19). Wild-type mice are minimally susceptible to certain SARS-CoV-2 lineages (beta and gamma variants), whereas hACE2-transgenic mice succumb to SARS-CoV-2 and develop a fatal neurological disease. In this article, we aimed to chronologically characterize SARS-CoV-2 neuroinvasion and neuropathology. Necropsies were performed at different time points, and the brain and olfactory mucosa were processed for histopathological analysis. SARS-CoV-2 virological assays including immunohistochemistry were performed along with a panel of antibodies to assess neuroinflammation. At 6 to 7 days post inoculation (dpi), brain lesions were characterized by nonsuppurative meningoencephalitis and diffuse astrogliosis and microgliosis. Vasculitis and thrombosis were also present and associated with occasional microhemorrhages and spongiosis. Moreover, there was vacuolar degeneration of virus-infected neurons. At 2 dpi, SARS-CoV-2 immunolabeling was only found in the olfactory mucosa, but at 4 dpi intraneuronal virus immunolabeling had already reached most of the brain areas. Maximal distribution of the virus was observed throughout the brain at 6 to 7 dpi except for the cerebellum, which was mostly spared. Our results suggest an early entry of the virus through the olfactory mucosa and a rapid interneuronal spread of the virus leading to acute encephalitis and neuronal damage in this mouse model.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Doenças dos Roedores , Enzima de Conversão de Angiotensina 2 , Animais , Encéfalo/patologia , COVID-19/veterinária , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/veterinária , Peptidil Dipeptidase A/metabolismo , Doenças dos Roedores/patologia , SARS-CoV-2
11.
Emerg Infect Dis ; 23(2): 232-240, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27901465

RESUMO

Middle East respiratory syndrome (MERS) cases continue to be reported, predominantly in Saudi Arabia and occasionally other countries. Although dromedaries are the main reservoir, other animal species might be susceptible to MERS coronavirus (MERS-CoV) infection and potentially serve as reservoirs. To determine whether other animals are potential reservoirs, we inoculated MERS-CoV into llamas, pigs, sheep, and horses and collected nasal and rectal swab samples at various times. The presence of MERS-CoV in the nose of pigs and llamas was confirmed by PCR, titration of infectious virus, immunohistochemistry, and in situ hybridization; seroconversion was detected in animals of both species. Conversely, in sheep and horses, virus-specific antibodies did not develop and no evidence of viral replication in the upper respiratory tract was found. These results prove the susceptibility of llamas and pigs to MERS-CoV infection. Thus, the possibility of MERS-CoV circulation in animals other than dromedaries, such as llamas and pigs, is not negligible.


Assuntos
Doenças dos Animais/epidemiologia , Infecções por Coronavirus/veterinária , Suscetibilidade a Doenças , Gado/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio , Doenças dos Animais/diagnóstico , Doenças dos Animais/virologia , Animais , Chlorocebus aethiops , Reservatórios de Doenças , Ensaio de Imunoadsorção Enzimática , Cavalos , Imunidade Humoral , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Testes de Neutralização , Vigilância em Saúde Pública , RNA Viral , Ovinos , Suínos , Células Vero
12.
J Virol ; 89(7): 3859-69, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25609809

RESUMO

UNLABELLED: The Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 as the causative agent of a severe respiratory disease with a fatality rate of approximately 30%. The high virulence and mortality rate prompted us to analyze aspects of MERS-CoV pathogenesis, especially its interaction with innate immune cells such as antigen-presenting cells (APCs). Particularly, we analyzed secretion of type I and type III interferons (IFNs) by APCs, i.e., B cells, macrophages, monocyte-derived/myeloid dendritic cells (MDDCs/mDCs), and by plasmacytoid dendritic cells (pDCs) of human and murine origin after inoculation with MERS-CoV. Production of large amounts of type I and III IFNs was induced exclusively in human pDCs, which were significantly higher than IFN induction by severe acute respiratory syndrome (SARS)-CoV. Of note, IFNs were secreted in the absence of productive replication. However, receptor binding, endosomal uptake, and probably signaling via Toll-like receptor 7 (TLR7) were critical for sensing of MERS-CoV by pDCs. Furthermore, active transcription of MERS-CoV N RNA and subsequent N protein expression were evident in infected pDCs, indicating abortive infection. Taken together, our results point toward dipeptidyl peptidase 4 (DPP4)-dependent endosomal uptake and subsequent infection of human pDCs by MERS-CoV. However, the replication cycle is stopped after early gene expression. In parallel, human pDCs are potent IFN-producing cells upon MERS-CoV infection. Knowledge of such IFN responses supports our understanding of MERS-CoV pathogenesis and is critical for the choice of treatment options. IMPORTANCE: MERS-CoV causes a severe respiratory disease with high fatality rates in human patients. Recently, confirmed human cases have increased dramatically in both number and geographic distribution. Understanding the pathogenesis of this highly pathogenic CoV is crucial for developing successful treatment strategies. This study elucidates the interaction of MERS-CoV with APCs and pDCs, particularly the induction of type I and III IFN secretion. Human pDCs are the immune cell population sensing MERS-CoV but secrete significantly larger amounts of IFNs, especially IFN-α, than in response to SARS-CoV. A model for molecular virus-host interactions is presented outlining IFN induction in pDCs. The massive IFN secretion upon contact suggests a critical role of this mechanism for the high degree of immune activation observed during MERS-CoV infection.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/virologia , Interferons/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Animais , Dipeptidil Peptidase 4/metabolismo , Endocitose , Endossomos/metabolismo , Endossomos/virologia , Humanos , Camundongos Endogâmicos C57BL , Internalização do Vírus
13.
J Virol ; 89(22): 11654-67, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26355094

RESUMO

UNLABELLED: In 2012, the first cases of infection with the Middle East respiratory syndrome coronavirus (MERS-CoV) were identified. Since then, more than 1,000 cases of MERS-CoV infection have been confirmed; infection is typically associated with considerable morbidity and, in approximately 30% of cases, mortality. Currently, there is no protective vaccine available. Replication-competent recombinant measles virus (MV) expressing foreign antigens constitutes a promising tool to induce protective immunity against corresponding pathogens. Therefore, we generated MVs expressing the spike glycoprotein of MERS-CoV in its full-length (MERS-S) or a truncated, soluble variant of MERS-S (MERS-solS). The genes encoding MERS-S and MERS-solS were cloned into the vaccine strain MVvac2 genome, and the respective viruses were rescued (MVvac2-CoV-S and MVvac2-CoV-solS). These recombinant MVs were amplified and characterized at passages 3 and 10. The replication of MVvac2-CoV-S in Vero cells turned out to be comparable to that of the control virus MVvac2-GFP (encoding green fluorescent protein), while titers of MVvac2-CoV-solS were impaired approximately 3-fold. The genomic stability and expression of the inserted antigens were confirmed via sequencing of viral cDNA and immunoblot analysis. In vivo, immunization of type I interferon receptor-deficient (IFNAR(-/-))-CD46Ge mice with 2 × 10(5) 50% tissue culture infective doses of MVvac2-CoV-S(H) or MVvac2-CoV-solS(H) in a prime-boost regimen induced robust levels of both MV- and MERS-CoV-neutralizing antibodies. Additionally, induction of specific T cells was demonstrated by T cell proliferation, antigen-specific T cell cytotoxicity, and gamma interferon secretion after stimulation of splenocytes with MERS-CoV-S presented by murine dendritic cells. MERS-CoV challenge experiments indicated the protective capacity of these immune responses in vaccinated mice. IMPORTANCE: Although MERS-CoV has not yet acquired extensive distribution, being mainly confined to the Arabic and Korean peninsulas, it could adapt to spread more readily among humans and thereby become pandemic. Therefore, the development of a vaccine is mandatory. The integration of antigen-coding genes into recombinant MV resulting in coexpression of MV and foreign antigens can efficiently be achieved. Thus, in combination with the excellent safety profile of the MV vaccine, recombinant MV seems to constitute an ideal vaccine platform. The present study shows that a recombinant MV expressing MERS-S is genetically stable and induces strong humoral and cellular immunity against MERS-CoV in vaccinated mice. Subsequent challenge experiments indicated protection of vaccinated animals, illustrating the potential of MV as a vaccine platform with the potential to target emerging infections, such as MERS-CoV.


Assuntos
Infecções por Coronavirus/prevenção & controle , Vacina contra Sarampo/imunologia , Vírus do Sarampo/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Proliferação de Células , Chlorocebus aethiops , Clonagem Molecular/métodos , Infecções por Coronavirus/imunologia , Células Dendríticas/imunologia , Células HEK293 , Humanos , Imunidade Celular/imunologia , Interferon gama/metabolismo , Vírus do Sarampo/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Glicoproteína da Espícula de Coronavírus/biossíntese , Glicoproteína da Espícula de Coronavírus/genética , Linfócitos T/imunologia , Vacinação , Células Vero
14.
Med Microbiol Immunol ; 205(2): 173-83, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26475282

RESUMO

The 2014 Zaire Ebola virus (ZEBOV) outbreak in West Africa represents an international public health concern. Highly sensitive and precise diagnostic tools are needed. In the present study, we developed a ZEBOV-specific enzyme-linked immunosorbent assay (ELISA) using inactivated ZEBOV isolate Makona from March 2014. Mock antigen was used to address nonspecific binding. Specificity, reproducibility and precision were determined to measure assay performance. The ZEBOV ELISA proved to be specific (96 %), reproducible and precise (Intra-assay CV 8 %, Inter-assay CV 18 %). Using the human monoclonal antibody KZ52, we showed that the ELISA was able to detect conformation-specific antibodies. Monitoring antibody development in 29 PCR-positive EBOV disease (EVD) patients revealed seroconversion in all cases. In addition, the ELISA was used to detect ZEBOV glycoprotein (GP)-specific antibodies in a vaccinated volunteer from day 14 until 5 years post-vaccination with a VSV-ZEBOV candidate vaccine. The results demonstrate the high reproducibility, specificity and sensitivity of this newly developed ELISA, which is suitable for the detection of specific antibody responses directed against different ZEBOV proteins in EVD patients and against the ZEBOV surface glycoprotein GP in vaccinated individuals.


Assuntos
Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Ensaio de Imunoadsorção Enzimática , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/imunologia , Animais , Linhagem Celular , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/normas , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Vet Res ; 45: 7, 2014 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-24460592

RESUMO

Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5-types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7-virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-ß mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1ß, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens.


Assuntos
Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H7N1/patogenicidade , Influenza Aviária/imunologia , Doenças das Aves Domésticas/imunologia , Vírus Reordenados/patogenicidade , Proteínas não Estruturais Virais/genética , Animais , Galinhas , Interações Hospedeiro-Patógeno , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/fisiologia , Vírus da Influenza A Subtipo H7N1/genética , Vírus da Influenza A Subtipo H7N1/imunologia , Vírus da Influenza A Subtipo H7N1/fisiologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Vírus Reordenados/genética , Vírus Reordenados/imunologia , Vírus Reordenados/fisiologia , Virulência , Replicação Viral
16.
Microbes Infect ; 26(3): 105252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37981029

RESUMO

Severe Middle East respiratory syndrome (MERS) is characterized by massive infiltration of immune cells in lungs. MERS-coronavirus (MERS-CoV) replicates in vitro in human macrophages, inducing high pro-inflammatory responses. In contrast, camelids, the main reservoir for MERS-CoV, are asymptomatic carriers. Although limited infiltration of leukocytes has been observed in the lower respiratory tract of camelids, their role during infection remains unknown. Here we studied whether llama alveolar macrophages (LAMs) are susceptible to MERS-CoV infection and can elicit pro-inflammatory responses. MERS-CoV did not replicate in LAMs; however, they effectively capture and degrade viral particles. Moreover, transcriptomic analyses showed that LAMs do not induce pro-inflammatory cytokines upon MERS-CoV sensing.


Assuntos
Camelídeos Americanos , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , Citocinas/metabolismo , Macrófagos Alveolares , Camelídeos Americanos/metabolismo , Replicação Viral
17.
Vet Microbiol ; 290: 110001, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280305

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging zoonotic virus of public and animal health concern, of which felids have been suggested as potential reservoirs. Although SARS-CoV-2 exposure has been detected in domestic and wild captive animals belonging to Felidae family, surveillance has not been carried out in free-ranging wild felids so far. The aim of the present study was to assess SARS-CoV-2 exposure in the Iberian lynx (Lynx pardinus), the most endangered felid in the world. Between 2019 and 2022, we conducted a seroepidemiological study of SARS-CoV-2 in 276 free-ranging and captive Iberian lynxes. Our results evidenced limited (0.4%; 95%CI: 0.0-1.1) but not negligible exposure to this emerging virus in this endangered felid species, increasing the SARS-CoV-2 host range. The circulation of this virus in wildlife evidences the need of integrated European wildlife monitoring.


Assuntos
COVID-19 , Lynx , Animais , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/veterinária , Animais Selvagens , Espécies em Perigo de Extinção
18.
Nat Commun ; 15(1): 1051, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316751

RESUMO

Here we report the characterization of 17T2, a SARS-CoV-2 pan-neutralizing human monoclonal antibody isolated from a COVID-19 convalescent individual infected during the first pandemic wave. 17T2 is a class 1 VH1-58/κ3-20 antibody, derived from a receptor binding domain (RBD)-specific IgA+ memory B cell, with a broad neutralizing activity against former and new SARS-CoV-2 variants, including XBB.1.16 and BA.2.86 Omicron subvariants. Consistently, 17T2 demonstrates in vivo prophylactic and therapeutic activity against Omicron BA.1.1 infection in K18-hACE2 mice. Cryo-electron microscopy reconstruction shows that 17T2 binds the BA.1 spike with the RBD in "up" position and blocks the receptor binding motif, as other structurally similar antibodies do, including S2E12. Yet, unlike S2E12, 17T2 retains its neutralizing activity against all variants tested, probably due to a larger RBD contact area. These results highlight the impact of small structural antibody changes on neutralizing performance and identify 17T2 as a potential candidate for future clinical interventions.


Assuntos
Anticorpos Monoclonais , COVID-19 , Humanos , Animais , Camundongos , SARS-CoV-2 , Microscopia Crioeletrônica , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética
19.
NPJ Vaccines ; 9(1): 48, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413645

RESUMO

Age is associated with reduced efficacy of vaccines and linked to higher risk of severe COVID-19. Here we determined the impact of ageing on the efficacy of a SARS-CoV-2 vaccine based on a stabilised Spike glycoprotein (S-29) that had previously shown high efficacy in young animals. Thirteen to 18-month-old golden Syrian hamsters (GSH) and 22-23-month-old K18-hCAE2 mice were immunised twice with S-29 protein in AddaVaxTM adjuvant. GSH were intranasally inoculated with SARS-CoV-2 either two weeks or four months after the booster dose, while all K18-hACE2 mice were intranasally inoculated two weeks after the second immunisation. Body weight and clinical signs were recorded daily post-inoculation. Lesions and viral load were investigated in different target tissues. Immunisation induced seroconversion and production of neutralising antibodies; however, animals were only partially protected from weight loss. We observed a significant reduction in the amount of viral RNA and a faster viral protein clearance in the tissues of immunized animals. Infectious particles showed a faster decay in vaccinated animals while tissue lesion development was not altered. In GSH, the shortest interval between immunisation and inoculation reduced RNA levels in the lungs, while the longest interval was equally effective in reducing RNA in nasal turbinates; viral nucleoprotein amount decreased in both tissues. In mice, immunisation was able to improve the survival of infected animals. Despite the high protection shown in young animals, S-29 efficacy was reduced in the geriatric population. Our research highlights the importance of testing vaccine efficacy in older animals as part of preclinical vaccine evaluation.

20.
Nat Commun ; 15(1): 2349, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514609

RESUMO

Safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are crucial to fight against the coronavirus disease 2019 pandemic. Most vaccines are based on a mutated version of the Spike glycoprotein [K986P/V987P (S-2P)] with improved stability, yield and immunogenicity. However, S-2P is still produced at low levels. Here, we describe the V987H mutation that increases by two-fold the production of the recombinant Spike and the exposure of the receptor binding domain (RBD). S-V987H immunogenicity is similar to S-2P in mice and golden Syrian hamsters (GSH), and superior to a monomeric RBD. S-V987H immunization confer full protection against severe disease in K18-hACE2 mice and GSH upon SARS-CoV-2 challenge (D614G or B.1.351 variants). Furthermore, S-V987H immunized K18-hACE2 mice show a faster tissue viral clearance than RBD- or S-2P-vaccinated animals challenged with D614G, B.1.351 or Omicron BQ1.1 variants. Thus, S-V987H protein might be considered for future SARS-CoV-2 vaccines development.


Assuntos
COVID-19 , Melfalan , SARS-CoV-2 , gama-Globulinas , Cricetinae , Animais , Humanos , Camundongos , Mesocricetus , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Glicoproteína da Espícula de Coronavírus/genética , Imunização , Glicoproteínas , Anticorpos Neutralizantes , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA