Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 75(5): 1031-1042.e4, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31327636

RESUMO

Every bacterial population harbors a small subpopulation of so-called persisters that are transiently antibiotic tolerant. These persisters are associated with the recalcitrance of chronic infections because they can recolonize the host after antibiotic removal. Although several effectors have been described to induce persistence, persister cell awakening is poorly understood. We previously reported that the toxin HokB induces persistence via pore formation, resulting in membrane depolarization and ATP leakage. We now delineate mechanisms responsible for the awakening of HokB-induced persisters. We show that HokB dimerization by the oxidoreductase DsbA is essential for pore formation and peptide stability. Pores are disassembled via DsbC-mediated monomerization, which targets HokB for DegQ-mediated degradation. Finally, pore disassembly allows membrane repolarization by the electron transport chain, supporting cells to resume growth. These results provide a detailed view of both the formation and awakening of HokB-induced persister cells.


Assuntos
Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Potenciais da Membrana/fisiologia , Proteólise , Serina Endopeptidases/metabolismo , Toxinas Bacterianas/genética , Membrana Celular/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Serina Endopeptidases/genética
2.
EMBO Rep ; 24(8): e57309, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395716

RESUMO

Recalcitrant infections pose a serious challenge by prolonging antibiotic therapies and contributing to the spread of antibiotic resistance, thereby threatening the successful treatment of bacterial infections. One potential contributing factor in persistent infections is antibiotic persistence, which involves the survival of transiently tolerant subpopulations of bacteria. This review summarizes the current understanding of antibiotic persistence, including its clinical significance and the environmental and evolutionary factors at play. Additionally, we discuss the emerging concept of persister regrowth and potential strategies to combat persister cells. Recent advances highlight the multifaceted nature of persistence, which is controlled by deterministic and stochastic elements and shaped by genetic and environmental factors. To translate in vitro findings to in vivo settings, it is crucial to include the heterogeneity and complexity of bacterial populations in natural environments. As researchers continue to gain a more holistic understanding of this phenomenon and develop effective treatments for persistent bacterial infections, the study of antibiotic persistence is likely to become increasingly complex.


Assuntos
Antibacterianos , Infecções Bacterianas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Evolução Biológica , Meio Ambiente , Farmacorresistência Bacteriana/genética
3.
Nucleic Acids Res ; 51(7): 3420-3435, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36864742

RESUMO

Obg is a widely conserved and essential GTPase in bacteria, which plays a central role in a large range of important cellular processes, such as ribosome biogenesis, DNA replication, cell division and bacterial persistence. Nevertheless, the exact function of Obg in these processes and the interactions it makes within the associated pathways remain largely unknown. Here, we identify the DNA-binding TrpD2 protein YbiB as an interactor of the Escherichia coli Obg (ObgE). We show that both proteins interact with high affinity in a peculiar biphasic fashion, and pinpoint the intrinsically disordered and highly negatively charged C-terminal domain of ObgE as a main driver for this interaction. Molecular docking and X-ray crystallography, together with site-directed mutagenesis, are used to map the binding site of this ObgE C-terminal domain within a highly positively charged groove on the surface of the YbiB homodimer. Correspondingly, ObgE efficiently inhibits the binding of DNA to YbiB, indicating that ObgE competes with DNA for binding in the positive clefts of YbiB. This study thus forms an important step for the further elucidation of the interactome and cellular role of the essential bacterial protein Obg.


Assuntos
Proteínas de Escherichia coli , Proteínas Monoméricas de Ligação ao GTP , Proteínas de Escherichia coli/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Simulação de Acoplamento Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo
4.
Mol Cell ; 59(1): 9-21, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26051177

RESUMO

Within bacterial populations, a small fraction of persister cells is transiently capable of surviving exposure to lethal doses of antibiotics. As a bet-hedging strategy, persistence levels are determined both by stochastic induction and by environmental stimuli called responsive diversification. Little is known about the mechanisms that link the low frequency of persisters to environmental signals. Our results support a central role for the conserved GTPase Obg in determining persistence in Escherichia coli in response to nutrient starvation. Obg-mediated persistence requires the stringent response alarmone (p)ppGpp and proceeds through transcriptional control of the hokB-sokB type I toxin-antitoxin module. In individual cells, increased Obg levels induce HokB expression, which in turn results in a collapse of the membrane potential, leading to dormancy. Obg also controls persistence in Pseudomonas aeruginosa and thus constitutes a conserved regulator of antibiotic tolerance. Combined, our findings signify an important step toward unraveling shared genetic mechanisms underlying persistence.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/biossíntese , Farmacorresistência Bacteriana/fisiologia , Proteínas de Escherichia coli/biossíntese , Escherichia coli/genética , Proteínas de Ligação ao GTP/genética , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Membrana Celular/fisiologia , Proteínas de Escherichia coli/genética , Potenciais da Membrana/genética , Testes de Sensibilidade Microbiana , Estrutura Terciária de Proteína/genética
5.
Trends Genet ; 35(6): 401-411, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31036343

RESUMO

All bacterial populations harbor a small fraction of transiently antibiotic-tolerant cells called persisters. These phenotypic variants compromise successful antibiotic treatment because they are held responsible for the relapse of many chronic infections. In addition, studies employing experimental evolution have demonstrated that persistence contributes to the development of antibiotic resistance. Persisters are typically described as dormant cells. However, recent findings indicate a role for active mechanisms in the formation and maintenance of the persister phenotype. This review summarizes novel insights into the molecular mechanisms of persister formation and awakening, focusing on changes in cell physiology mediated by persistence effectors.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Farmacorresistência Bacteriana , Bactérias/genética , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos/genética , Replicação do DNA , Metabolismo Energético/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Transcrição Gênica
6.
Mol Microbiol ; 112(5): 1593-1608, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31498933

RESUMO

Obg is a versatile GTPase that plays a pivotal role in bacterial persistence. We previously showed that the Escherichia coli homolog ObgE exerts this activity through transcriptional activation of a toxin-antitoxin module and subsequent membrane depolarization. Here, we assessed the role of G-domain functionality in ObgE-mediated persistence. Through screening of a mutant library, we identified five obgE alleles (with substitutions G166V, D246G, S270I, N283I and I313N) that have lost their persistence function and no longer activate hokB expression. These alleles support viability of a strain otherwise deprived of ObgE, indicating that ObgE's persistence function can be uncoupled from its essential role. Based on the ObgE crystal structure, we designed two additional mutant proteins (T193A and D286Y), one of which (D286Y) no longer affects persistence. Using isothermal titration calorimetry, stopped-flow experiments and kinetics, we subsequently assessed nucleotide binding and GTPase activity in all mutants. With the exception of the S270I mutant that is possibly affected in protein-protein interactions, all mutants that have lost their persistence function display severely reduced binding to GDP or the alarmone ppGpp. However, we find no clear relation between persistence and GTP or pppGpp binding nor with GTP hydrolysis. Combined, our results signify an important step toward understanding biochemical determinants underlying persistence.


Assuntos
Toxinas Bacterianas/biossíntese , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Relação Estrutura-Atividade , Ativação Transcricional/genética
7.
Int J Mol Sci ; 21(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861427

RESUMO

Even though the Obg protein is essential for bacterial viability, the cellular functions of this universally conserved GTPase remain enigmatic. Moreover, the influence of GTP and GDP binding on the activity of this protein is largely unknown. Previously, we identified a mutant isoform of ObgE (the Obg protein of Escherichia coli) that triggers cell death. In this research we explore the biochemical requirements for the toxic effect of this mutant ObgE* isoform, using cell death as a readily accessible read-out for protein activity. Both the absence of the N-terminal domain and a decreased GTP binding affinity neutralize ObgE*-mediated toxicity. Moreover, a deletion in the region that connects the N-terminal domain to the G domain likewise abolishes toxicity. Taken together, these data indicate that GTP binding by ObgE* triggers a conformational change that is transmitted to the N-terminal domain to confer toxicity. We therefore conclude that ObgE*-GTP, but not ObgE*-GDP, is the active form of ObgE* that is detrimental to cell viability. Based on these data, we speculate that also for wild-type ObgE, GTP binding triggers conformational changes that affect the N-terminal domain and thereby control ObgE function.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Escherichia coli/química , Guanosina Trifosfato/química , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Mutantes , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Relação Estrutura-Atividade
8.
J Biol Chem ; 292(14): 5871-5883, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223358

RESUMO

The Obg protein family belongs to the TRAFAC (translation factor) class of P-loop GTPases and is conserved from bacteria to eukaryotes. Essential roles in many different cellular processes have been suggested for the Obg protein from Escherichia coli (ObgE), and we recently showed that it is a central regulator of bacterial persistence. Here, we report the first crystal structure of ObgE at 1.85-Å resolution in the GDP-bound state, showing the characteristic N-terminal domain and a central G domain that are common to all Obg proteins. ObgE also contains an intrinsically disordered C-terminal domain, and we show here that this domain specifically contributed to GTP binding, whereas it did not influence GDP binding or GTP hydrolysis. Biophysical analysis, using small angle X-ray scattering and multi-angle light scattering experiments, revealed that ObgE is a monomer in solution, regardless of the bound nucleotide. In contrast to recent suggestions, our biochemical analyses further indicate that ObgE is neither activated by K+ ions nor by homodimerization. However, the ObgE GTPase activity was stimulated upon binding to the ribosome, confirming the ribosome-dependent GTPase activity of the Obg family. Combined, our data represent an important step toward further unraveling the detailed molecular mechanism of ObgE, which might pave the way to further studies into how this GTPase regulates bacterial physiology, including persistence.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Monoméricas de Ligação ao GTP/química , Potássio/química , Multimerização Proteica , Cátions Monovalentes/química , Cátions Monovalentes/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Potássio/metabolismo , Domínios Proteicos
9.
Mol Biol Evol ; 34(11): 2927-2943, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961727

RESUMO

Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well.


Assuntos
Adaptação Fisiológica/genética , Etanol/metabolismo , Estudo de Associação Genômica Ampla/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Etanol/química , Evolução Molecular , Redes Reguladoras de Genes/genética , Genoma , Mutação/genética , Taxa de Mutação , Fenótipo , Análise de Sequência de DNA/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-27993858

RESUMO

The spread of antibiotic resistance and the challenges associated with antiseptics such as chlorhexidine have necessitated a search for new antibacterial agents against oral bacterial pathogens. As a result of failing traditional approaches, drug repurposing has emerged as a novel paradigm to find new antibacterial agents. In this study, we examined the effects of the FDA-approved anticancer agent toremifene against the oral bacteria Porphyromonas gingivalis and Streptococcus mutans We found that the drug was able to inhibit the growth of both pathogens, as well as prevent biofilm formation, at concentrations ranging from 12.5 to 25 µM. Moreover, toremifene was shown to eradicate preformed biofilms at concentrations ranging from 25 to 50 µM. In addition, we found that toremifene prevents P. gingivalis and S. mutans biofilm formation on titanium surfaces. A time-kill study indicated that toremifene is bactericidal against S. mutans Macromolecular synthesis assays revealed that treatment with toremifene does not cause preferential inhibition of DNA, RNA, or protein synthesis pathways, indicating membrane-damaging activity. Biophysical studies using fluorescent probes and fluorescence microscopy further confirmed the membrane-damaging mode of action. Taken together, our results suggest that the anticancer agent toremifene is a suitable candidate for further investigation for the development of new treatment strategies for oral bacterial infections.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Hormonais/farmacologia , Biofilmes/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Toremifeno/farmacologia , Biofilmes/crescimento & desenvolvimento , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular/efeitos dos fármacos , Placa Dentária/tratamento farmacológico , Placa Dentária/microbiologia , Reposicionamento de Medicamentos , Farmacorresistência Bacteriana Múltipla/fisiologia , Humanos , Testes de Sensibilidade Microbiana , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/ultraestrutura , Streptococcus mutans/metabolismo , Streptococcus mutans/ultraestrutura , Titânio/análise
11.
Drug Resist Updat ; 29: 76-89, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27912845

RESUMO

Any bacterial population harbors a small number of phenotypic variants that survive exposure to high concentrations of antibiotic. Importantly, these so-called 'persister cells' compromise successful antibiotic therapy of bacterial infections and are thought to contribute to the development of antibiotic resistance. Intriguingly, drug-tolerant persisters have also been identified as a factor underlying failure of chemotherapy in tumor cell populations. Recent studies have begun to unravel the complex molecular mechanisms underlying persister formation and revolve around stress responses and toxin-antitoxin modules. Additionally, in vitro evolution experiments are revealing insights into the evolutionary and adaptive aspects of this phenotype. Furthermore, ever-improving experimental techniques are stimulating efforts to investigate persisters in their natural, infection-associated, in vivo environment. This review summarizes recent insights into the molecular mechanisms of persister formation, explains how persisters complicate antibiotic treatment of infections, and outlines emerging strategies to combat these tolerant cells.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Estresse Fisiológico/efeitos dos fármacos , Sistemas Toxina-Antitoxina/efeitos dos fármacos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Células Clonais , Resistencia a Medicamentos Antineoplásicos/genética , Interação Gene-Ambiente , Heterogeneidade Genética , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Seleção Genética , Processos Estocásticos , Estresse Fisiológico/genética , Sistemas Toxina-Antitoxina/genética
12.
Antimicrob Agents Chemother ; 60(8): 4630-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27185802

RESUMO

Health care-associated infections present a major threat to modern medical care. Six worrisome nosocomial pathogens-Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.-are collectively referred to as the "ESKAPE bugs." They are notorious for extensive multidrug resistance, yet persistence, or the phenotypic tolerance displayed by a variant subpopulation, remains underappreciated in these pathogens. Importantly, persistence can prevent eradication of antibiotic-sensitive bacterial populations and is thought to act as a catalyst for the development of genetic resistance. Concentration- and time-dependent aminoglycoside killing experiments were used to investigate persistence in the ESKAPE pathogens. Additionally, a recently developed method for the experimental evolution of persistence was employed to investigate adaptation to high-dose, extended-interval aminoglycoside therapy in vitro We show that ESKAPE pathogens exhibit biphasic killing kinetics, indicative of persister formation. In vitro cycling between aminoglycoside killing and persister cell regrowth, evocative of clinical high-dose extended-interval therapy, caused a 37- to 213-fold increase in persistence without the emergence of resistance. Increased persistence also manifested in biofilms and provided cross-tolerance to different clinically important antibiotics. Together, our results highlight a possible drawback of intermittent, high-dose antibiotic therapy and suggest that clinical diagnostics might benefit from taking into account persistence.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Aminoglicosídeos/farmacologia , Enterobacter/efeitos dos fármacos , Enterococcus faecium/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Biofilmes/efeitos dos fármacos , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Humanos
13.
Antimicrob Agents Chemother ; 60(11): 6483-6497, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27550355

RESUMO

We previously synthesized several series of compounds, based on the 5-aryl-2-aminoimidazole scaffold, that showed activity preventing the formation of Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa biofilms. Here, we further studied the activity spectrum of a number of the most active N1- and 2N-substituted 5-aryl-2-aminoimidazoles against a broad panel of biofilms formed by monospecies and mixed species of bacteria and fungi. An N1-substituted compound showed very strong activity against the biofilms formed by Gram-negative and Gram-positive bacteria and the fungus Candida albicans but was previously shown to be toxic against various eukaryotic cell lines. In contrast, 2N-substituted compounds were nontoxic and active against biofilms formed by Gram-negative bacteria and C. albicans but had reduced activity against biofilms formed by Gram-positive bacteria. In an attempt to develop nontoxic compounds with potent activity against biofilms formed by Gram-positive bacteria for application in antibiofilm coatings for medical implants, we synthesized novel compounds with substituents at both the N1 and 2N positions and tested these compounds for antibiofilm activity and toxicity. Interestingly, most of these N1-,2N-disubstituted 5-aryl-2-aminoimidazoles showed very strong activity against biofilms formed by Gram-positive bacteria and C. albicans in various setups with biofilms formed by monospecies and mixed species but lost activity against biofilms formed by Gram-negative bacteria. In light of application of these compounds as anti-infective coatings on orthopedic implants, toxicity against two bone cell lines and the functionality of these cells were tested. The N1-,2N-disubstituted 5-aryl-2-aminoimidazoles in general did not affect the viability of bone cells and even induced calcium deposition. This indicates that modulating the substitution pattern on positions N1 and 2N of the 5-aryl-2-aminoimidazole scaffold allows fine-tuning of both the antibiofilm activity spectrum and toxicity.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Imidazóis/farmacologia , Anti-Infecciosos/síntese química , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Imidazóis/síntese química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Relação Estrutura-Atividade
14.
J Antimicrob Chemother ; 71(4): 936-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26702917

RESUMO

OBJECTIVES: Biofilm-associated implant infections represent a serious public health problem. Covalent immobilization of antimicrobial agents on titanium (Ti), thereby inhibiting biofilm formation of microbial pathogens, is a solution to this problem. METHODS: Vancomycin (VAN) and caspofungin (CAS) were covalently bound on Ti substrates using an improved processing technique adapted to large-scale coating of implants. Resistance of the VAN-coated Ti (VAN-Ti) and CAS-coated Ti (CAS-Ti) substrates against in vitro biofilm formation of the bacterium Staphylococcus aureus and the fungal pathogen Candida albicans was determined by plate counting and visualized by confocal laser scanning microscopy. The efficacy of the coated Ti substrates was also tested in vivo using an adapted biomaterial-associated murine infection model in which control-Ti, VAN-Ti or CAS-Ti substrates were implanted subcutaneously and subsequently challenged with the respective pathogens. The osseointegration potential of VAN-Ti and CAS-Ti was examined in vitro using human bone marrow-derived stromal cells, and for VAN-Ti also in a rat osseointegration model. RESULTS: In vitro biofilm formation of S. aureus and C. albicans on VAN-Ti and CAS-Ti substrates, respectively, was significantly reduced compared with biofilm formation on control-Ti. In vivo, we observed over 99.9% reduction in biofilm formation of S. aureus on VAN-Ti substrates and 89% reduction in biofilm formation of C. albicans on CAS-Ti substrates, compared with control-Ti substrates. The coated substrates supported osseointegration in vitro and in vivo. CONCLUSIONS: These data demonstrate the clinical potential of covalently bound VAN and CAS on Ti to reduce microbial biofilm formation without jeopardizing osseointegration.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Titânio/farmacologia , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Candida albicans/fisiologia , Caspofungina , Linhagem Celular , Equinocandinas/farmacologia , Feminino , Humanos , Lipopeptídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Osseointegração , Próteses e Implantes/microbiologia , Staphylococcus aureus/fisiologia , Vancomicina/farmacologia
15.
Antimicrob Agents Chemother ; 59(6): 3052-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25753645

RESUMO

In the past, biofilm-related research has focused mainly on axenic biofilms. However, in nature, biofilms are often composed of multiple species, and the resulting polymicrobial interactions influence industrially and clinically relevant outcomes such as performance and drug resistance. In this study, we show that Escherichia coli does not affect Candida albicans tolerance to amphotericin or caspofungin in an E. coli/C. albicans biofilm. In contrast, ofloxacin tolerance of E. coli is significantly increased in a polymicrobial E. coli/C. albicans biofilm compared to its tolerance in an axenic E. coli biofilm. The increased ofloxacin tolerance of E. coli is mainly biofilm specific, as ofloxacin tolerance of E. coli is less pronounced in polymicrobial E. coli/C. albicans planktonic cultures. Moreover, we found that ofloxacin tolerance of E. coli decreased significantly when E. coli/C. albicans biofilms were treated with matrix-degrading enzymes such as the ß-1,3-glucan-degrading enzyme lyticase. In line with a role for ß-1,3-glucan in mediating ofloxacin tolerance of E. coli in a biofilm, we found that ofloxacin tolerance of E. coli increased even more in E. coli/C. albicans biofilms consisting of a high-ß-1,3-glucan-producing C. albicans mutant. In addition, exogenous addition of laminarin, a polysaccharide composed mainly of poly-ß-1,3-glucan, to an E. coli biofilm also resulted in increased ofloxacin tolerance. All these data indicate that ß-1,3-glucan from C. albicans increases ofloxacin tolerance of E. coli in an E. coli/C. albicans biofilm.


Assuntos
Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Escherichia coli/efeitos dos fármacos , Ofloxacino/farmacologia , beta-Glucanas/metabolismo , Antifúngicos/farmacologia , Candida albicans/ultraestrutura , Farmacorresistência Fúngica , Escherichia coli/ultraestrutura
16.
Mol Ecol ; 24(7): 1572-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25721227

RESUMO

Microbial populations often contain a fraction of slow-growing persister cells that withstand antibiotics and other stress factors. Current theoretical models predict that persistence levels should reflect a stable state in which the survival advantage of persisters under adverse conditions is balanced with the direct growth cost impaired under favourable growth conditions, caused by the nonreplication of persister cells. Based on this direct growth cost alone, however, it remains challenging to explain the observed low levels of persistence (<<1%) seen in the populations of many species. Here, we present data from the opportunistic human pathogen Pseudomonas aeruginosa that can explain this discrepancy by revealing various previously unknown costs of persistence. In particular, we show that in the absence of antibiotic stress, increased persistence is traded off against a lengthened lag phase as well as a reduced survival ability during stationary phase. We argue that these pleiotropic costs contribute to the very low proportions of persister cells observed among natural P. aeruginosa isolates (3 × 10(-8) -3 × 10(-4)) and that they can explain why strains with higher proportions of persister cells lose out very quickly in competition assays under favourable growth conditions, despite a negligible difference in maximal growth rate. We discuss how incorporating these trade-offs could lead to models that can better explain the evolution of persistence in nature and facilitate the rational design of alternative therapeutic strategies for treating infectious diseases.


Assuntos
Farmacorresistência Bacteriana/genética , Aptidão Genética , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Evolução Molecular , Variação Genética , Pseudomonas aeruginosa/efeitos dos fármacos
17.
Antimicrob Agents Chemother ; 58(12): 7606-10, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25288093

RESUMO

We here report on the in vitro activity of toremifene to inhibit biofilm formation of different fungal and bacterial pathogens, including Candida albicans, Candida glabrata, Candida dubliniensis, Candida krusei, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. We validated the in vivo efficacy of orally administered toremifene against C. albicans and S. aureus biofilm formation in a rat subcutaneous catheter model. Combined, our results demonstrate the potential of toremifene as a broad-spectrum oral antibiofilm compound.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Candidíase Cutânea/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Toremifeno/farmacologia , Administração Oral , Animais , Biofilmes/crescimento & desenvolvimento , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Candidíase Cutânea/microbiologia , Cateteres de Demora , Feminino , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Ratos , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento
18.
Antimicrob Agents Chemother ; 58(9): 5395-404, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24982087

RESUMO

We identified a 26-amino-acid truncated form of the 34-amino-acid cathelicidin-related antimicrobial peptide (CRAMP) in the islets of Langerhans of the murine pancreas. This peptide, P318, shares 67% identity with the LL-37 human antimicrobial peptide. As LL-37 displays antimicrobial and antibiofilm activity, we tested antifungal and antibiofilm activity of P318 against the fungal pathogen Candida albicans. P318 shows biofilm-specific activity as it inhibits C. albicans biofilm formation at 0.15 µM without affecting planktonic survival at that concentration. Next, we tested the C. albicans biofilm-inhibitory activity of a series of truncated and alanine-substituted derivatives of P318. Based on the biofilm-inhibitory activity of these derivatives and the length of the peptides, we decided to synthesize the shortened alanine-substituted peptide at position 10 (AS10; KLKKIAQKIKNFFQKLVP). AS10 inhibited C. albicans biofilm formation at 0.22 µM and acted synergistically with amphotericin B and caspofungin against mature biofilms. AS10 also inhibited biofilm formation of different bacteria as well as of fungi and bacteria in a mixed biofilm. In addition, AS10 does not affect the viability or functionality of different cell types involved in osseointegration of an implant, pointing to the potential of AS10 for further development as a lead peptide to coat implants.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Catelicidinas/farmacologia , Anfotericina B/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Caspofungina , Equinocandinas/farmacologia , Humanos , Lipopeptídeos , Camundongos , Testes de Sensibilidade Microbiana/métodos , Plâncton/efeitos dos fármacos
19.
Crit Rev Microbiol ; 40(3): 207-24, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23537324

RESUMO

Obg proteins (also known as ObgE, YhbZ and CgtA) are conserved P-loop GTPases, essential for growth in bacteria. Like other GTPases, Obg proteins cycle between a GTP-bound ON and a GDP-bound OFF state, thereby controlling cellular processes. Interestingly, the in vitro biochemical properties of Obg proteins suggest that they act as sensors for the cellular GDP/GTP pools and adjust their activity according to the cellular energy status. Obg proteins have been attributed a host of cellular functions, including roles in essential cellular processes (DNA replication, ribosome maturation) and roles in different stress adaptation pathways (stringent response, sporulation, general stress response). This review summarizes the current knowledge on Obg activity and function. Furthermore, we present a model that integrates the different functions of Obg by assigning it a fundamental role in cellular physiology, at the hub of protein and DNA synthesis. In particular, we believe that Obg proteins might provide a connection between different global pathways in order to fine-tune cellular processes in response to a given energy status.


Assuntos
Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , DNA/biossíntese , GTP Fosfo-Hidrolases/metabolismo , Biossíntese de Proteínas , Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Redes e Vias Metabólicas
20.
Bioorg Med Chem Lett ; 24(23): 5404-8, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25453797

RESUMO

Pseudomonas aeruginosa strains resistant towards all currently available antibiotics are increasingly encountered, raising the need for new anti-pseudomonal drugs. We therefore conducted a medium-throughput screen of a small-molecule collection resulting in the identification of the N-alkylated 3,6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol (MIC = 18.5 µg mL⁻¹). This compound, compound 1, is bacteriostatic towards a broad spectrum of Gram-positive and Gram-negative pathogens, including P. aeruginosa. Importantly, 1 also eradicates mature biofilms of P. aeruginosa. 1 displays no cytotoxicity against various human cell types, pointing to its potential for further development as a novel antibacterial drug.


Assuntos
Antibacterianos/uso terapêutico , Carbazóis/química , Pseudomonas aeruginosa/isolamento & purificação , Biofilmes , Carbazóis/análise , Humanos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA