Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Genomics ; 22(6): 393-403, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35340363

RESUMO

Rice is a major cereal crop, negatively impacted by soil-salinity, both in terms of plant growth as well as productivity. Salinity tolerant rice varieties have been developed using conventional breeding approaches, however, there has been limited success which is primarily due to the complexity of the trait, low yield, variable salt stress response and availability of genetic resources. Furthermore, the narrow genetic base is a hindrance for further improvement of the rice varieties. Therefore, there is a greater need to screen available donor germplasm in rice for salinity tolerance related genes and traits. In this regard, genomics based techniques are useful for exploring new gene resources and QTLs. In rice, the vast allelic diversity existing in the wild and cultivated germplasm needs to be explored for improving salt tolerance. In the present review, we provide an overview of the allelic diversity in the Quantitative Trait Loci (QTLs) like Saltol, qGR6.2, qSE3 and RNC4 as well as genes like OsHKT1;1, SKC1 (OsHKT1;5/HKT8) and OsSTL1 (salt tolerance level 1 gene) related to salt tolerance in rice. We have also discussed approaches for developing salt-tolerant cultivars by utilizing the effective QTLs or genes/alleles in rice.

2.
Environ Pollut ; 300: 118923, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104559

RESUMO

Arsenic (As) and cadmium (Cd), two major carcinogenic heavy metals, enters into human food chain by the consumption of rice or rice-based food products. Both As and Cd disturb plant-nutrient homeostasis and hence, reduces plant growth and crop productivity. In the present study, As/Cd modulated responses were studied in non-basmati (IR-64) and basmati (PB-1) rice varieties, at physiological, biochemical and transcriptional levels. At the seedling stage, PB-1 was found more sensitive than IR-64, in terms of root biomass; however, their shoot phenotype was comparable under As and Cd stress conditions. The ionomic data revealed significant nutrient deficiencies in As/Cd treated-roots. The principal component analysis identified NH4+ as As-associated key macronutrient; while, NH4+/NO3- and K+ was majorly associated with Cd mediated response, in both IR-64 and PB-1. Using a panel of 21 transporter gene expression, the extent of nutritional deficiency was ranked in the order of PB-1(As)

Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Cádmio/análise , Expressão Gênica , Nutrientes/análise , Oryza/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
3.
Rice (N Y) ; 12(1): 8, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778782

RESUMO

BACKGROUND: Climate extremes such as drought and flood have become major constraints to the sustainable rice crop productivity in rainfed environments. Availability of suitable climate-resilient varieties could help farmers to reduce the grain yield losses resulting from the climatic extremities. The present study was undertaken with an aim to develop high-yielding drought and submergence tolerant rice varieties using marker assisted introgression of qDTY1.1, qDTY2.1, qDTY3.1 and Sub1. Performance of near isogenic lines (NILs) developed in the background of Swarna was evaluated across 60 multi-locations trials (MLTs). The selected promising lines from MLTs were nominated and evaluated in national trials across 18 locations in India and 6 locations in Nepal. RESULTS: Grain yield advantage of the NILs with qDTY1.1 + qDTY2.1 + qDTY3.1 + Sub1 and qDTY2.1 + qDTY3.1 + Sub1 ranged from 76 to 2479 kg ha- 1 and 396 to 2376 kg ha- 1 under non-stress (NS) respectively and 292 to 1118 kg ha- 1 and 284 to 2086 kg ha- 1 under reproductive drought stress (RS), respectively. The NIL, IR96322-34-223-B-1-1-1-1 having qDTY1.1 + qDTY2.1 + qDTY3.1 + Sub1 has been released as variety CR dhan 801 in India. IR 96321-1447-651-B-1-1-2 having qDTY1.1 + qDTY3.1 + Sub 1 and IR 94391-131-358-19-B-1-1-1 having qDTY3.1 + Sub1 have been released as varieties Bahuguni dhan-1' and 'Bahuguni dhan-2' respectively in Nepal. Background recovery of 94%, 93% and 98% was observed for IR 96322-34-223-B-1-1-1-1, IR 96321-1447-651-B-1-1-2 and IR 94391-131-358-19-B-1-1-1 respectively on 6 K SNP Infinium chip. CONCLUSION: The drought and submergence tolerant rice varieties with pyramided multiple QTLs can ensure 0.2 to 1.7 t ha- 1 under reproductive stage drought stress and 0.1 to 1.0 t ha- 1 under submergence conditions with no yield penalty under non-stress to farmers irrespective of occurrence of drought and/or flood in the same or different seasons.

4.
Sci Rep ; 8(1): 9245, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915310

RESUMO

Flooding is one of the major constraints for rice production in rainfed lowlands, especially in years and areas of high rainfall. Incorporating the Sub1 (Submergence1) gene into high yielding popular varieties has proven to be the most feasible approach to sustain rice production in submergence-prone areas. Introgression of this QTL into popular varieties has resulted in considerable improvement in yield after flooding. However, its impact under non-flooded conditions or years have not been thoroughly evaluated which is important for the farmers to accept and adopt any new version of their popular varieties. The present study was carried out to evaluate the effect of Sub1 on grain yield of rice in different genetic backgrounds, under non-submergence conditions, over years and locations. The study was carried out using head to head trials in farmer's fields, which enable the farmers to more accurately compare the performance of Sub1 varieties with their recurrent parents under own management. The data generated from different head to head trials revealed that the grain yield of Sub1 varieties was either statistically similar or higher than their non-Sub1 counterparts under non-submergence conditions. Thus, Sub1 rice varieties show no instance of yield penalty of the introgressed gene.


Assuntos
Adaptação Fisiológica/genética , Oryza/genética , Cruzamento/métodos , Secas , Inundações , Genes de Plantas/genética , Locos de Características Quantitativas/genética
5.
PLoS One ; 8(5): e62795, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667521

RESUMO

BACKGROUND: Rice (Oryza sativa L.) is a highly drought sensitive crop, and most semi dwarf rice varieties suffer severe yield losses from reproductive stage drought stress. The genetic complexity of drought tolerance has deterred the identification of agronomically relevant quantitative trait loci (QTL) that can be deployed to improve rice yield under drought in rice. Convergent evidence from physiological characterization, genetic mapping, and multi-location field evaluation was used to address this challenge. METHODOLOGY/PRINCIPAL FINDINGS: Two pairs of backcross inbred lines (BILs) from a cross between drought-tolerant donor Aday Sel and high-yielding but drought-susceptible rice variety IR64 were produced. From six BC4F3 mapping populations produced by crossing the +QTL BILs with the -QTL BILs and IR64, four major-effect QTL--one each on chromosomes 2, 4, 9, and 10--were identified. Meta-analysis of transcriptome data from the +QTL/-QTL BILs identified differentially expressed genes (DEGs) significantly associated with QTL on chromosomes 2, 4, 9, and 10. Physiological characterization of BILs showed increased water uptake ability under drought. The enrichment of DEGs associated with root traits points to differential regulation of root development and function as contributing to drought tolerance in these BILs. BC4F3-derived lines with the QTL conferred yield advantages of 528 to 1875 kg ha⁻¹ over IR64 under reproductive-stage drought stress in the targeted ecosystems of South Asia. CONCLUSIONS/SIGNIFICANCE: Given the importance of rice in daily food consumption and the popularity of IR64, the BC4F3 lines with multiple QTL could provide higher livelihood security to farmers in drought-prone environments. Candidate genes were shortlisted for further characterization to confirm their role in drought tolerance. Differential yield advantages of different combinations of the four QTL reported here indicate that future research should include optimizing QTL combinations in different genetic backgrounds to maximize yield advantage under drought.


Assuntos
Adaptação Biológica/genética , Agricultura/métodos , Secas , Oryza/crescimento & desenvolvimento , Oryza/genética , Locos de Características Quantitativas/genética , Transcriptoma/genética , Cruzamentos Genéticos , Especificidade da Espécie
6.
Rice (N Y) ; 5(1): 31, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27234249

RESUMO

BACKGROUND: Drought is the most severe abiotic stress reducing rice yield in rainfed drought prone ecosystems. Variation in intensity and severity of drought from season to season and place to place requires cultivation of rice varieties with different level of drought tolerance in different areas. Multi environment evaluation of breeding lines helps breeder to identify appropriate genotypes for areas prone to similar level of drought stress. From a set of 129 advanced rice (Oryza sativa L.) breeding lines evaluated under rainfed drought-prone situations at three locations in eastern India from 2005 to 2007, a subset of 39 genotypes that were tested for two or more years was selected to develop a drought yield index (DYI) and mean yield index (MYI) based on yield under irrigated, moderate and severe reproductive-stage drought stress to help breeders select appropriate genotypes for different environments. RESULTS: ARB 8 and IR55419-04 recorded the highest drought yield index (DYI) and are identified as the best drought-tolerant lines. The proposed DYI provides a more effective assessment as it is calculated after accounting for a significant genotype x stress-level interaction across environments. For rainfed areas with variable frequency of drought occurrence, Mean yield index (MYI) along with deviation in performance of genotypes from currently cultivated popular varieties in all situations helps to select genotypes with a superior performance across irrigated, moderate and severe reproductive-stage drought situations. IR74371-70-1-1 and DGI 75 are the two genotypes identified to have shown a superior performance over IR64 and MTU1010 under all situations. CONCLUSION: For highly drought-prone areas, a combination of DYI with deviation in performance of genotypes under irrigated situations can enable breeders to select genotypes with no reduction in yield under favorable environments compared with currently cultivated varieties. For rainfed areas with variable frequency of drought stress, use of MYI together with deviation in performance of genotypes under different situations as compared to presently cultivated varieties will help breeders to select genotypes with superior performance under all situations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA