Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inflamm Res ; 73(4): 515-530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308760

RESUMO

OBJECTIVE AND DESIGN: We aimed to identify cytokines whose concentrations are related to lung damage, radiomic features, and clinical outcomes in COVID-19 patients. MATERIAL OR SUBJECTS: Two hundred twenty-six patients with SARS-CoV-2 infection and chest computed tomography (CT) images were enrolled. METHODS: CCL18, CHI3L1/YKL-40, GAL3, ANG2, IP-10, IL-10, TNFα, IL-6, soluble gp130, soluble IL-6R were quantified in plasma samples using Luminex assays. The Mann-Whitney U test, the Kruskal-Wallis test, correlation and regression analyses were performed. Mediation analyses were used to investigate the possible causal relationships between cytokines, lung damage, and outcomes. AVIEW lung cancer screening software, pyradiomics, and XGBoost classifier were used for radiomic feature analyses. RESULTS: CCL18, CHI3L1, and ANG2 systemic levels mainly reflected the extent of lung injury. Increased levels of every cytokine, but particularly of IL-6, were associated with the three outcomes: hospitalization, mechanical ventilation, and death. Soluble IL-6R showed a slight protective effect on death. The effect of age on COVID-19 outcomes was partially mediated by cytokine levels, while CT scores considerably mediated the effect of cytokine levels on outcomes. Radiomic-feature-based models confirmed the association between lung imaging characteristics and CCL18 and CHI3L1. CONCLUSION: Data suggest a causal link between cytokines (risk factor), lung damage (mediator), and COVID-19 outcomes.


Assuntos
COVID-19 , Neoplasias Pulmonares , Humanos , Interleucina-6 , SARS-CoV-2 , Proteína 1 Semelhante à Quitinase-3 , Detecção Precoce de Câncer , Radiômica , Pulmão/diagnóstico por imagem , Citocinas , Quimiocinas CC
2.
Phys Med ; 120: 103334, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520889

RESUMO

PURPOSE: Contrast-enhanced digital mammography (CEDM) is a relatively new imaging technique recombining low- and high-energy mammograms to emphasise iodine contrast. This work aims to perform a multicentric physical and dosimetric characterisation of four state-of-the-art CEDM systems. METHODS: We evaluated tube output, half-value-layer (HVL) for low- and high-energy and average glandular dose (AGD) in a wide range of equivalent breast thicknesses. CIRS phantom 022 was used to estimate the overall performance of a CEDM examination in the subtracted image in terms of the iodine difference signal (S). To calculate dosimetric impact of CEDM examination, we collected 4542 acquisitions on patients. RESULTS: Even if CEDM acquisition strategies differ, all the systems presented a linear behaviour between S and iodine concentration. The curve fit slopes expressed in PV/mg/cm2 were in the range [92-97] for Fujifilm, [31-32] for GE Healthcare, [35-36] for Hologic, and [114-130] for IMS. Dosimetric data from patients were matched with AGD values calculated using equivalent PMMA thicknesses. Fujifilm exhibited the lowest values, while GE Healthcare showed the highest. CONCLUSION: The subtracted image showed the ability of all the systems to give important information about the linearity of the signal with the iodine concentrations. All the patient-collected doses were under the AGD EUREF 2D Acceptable limit, except for patients with thicknesses ≤35 mm belonging to GE Healthcare and Hologic, which were slightly over. This work demonstrates the importance of testing each CEDM system to know how it performs regarding dose and the relationship between PV and iodine concentration.


Assuntos
Neoplasias da Mama , Iodo , Humanos , Feminino , Intensificação de Imagem Radiográfica/métodos , Meios de Contraste , Mamografia/métodos , Mama , Imagens de Fantasmas
3.
EJNMMI Phys ; 10(1): 31, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221434

RESUMO

BACKGROUND: 18F-FDG PET/CT imaging allows to study oncological patients and their relative diagnosis through the standardised uptake value (SUV) evaluation. During radiopharmaceutical injection, an extravasation event may occur, making the SUV value less accurate and possibly leading to severe tissue damage. The study aimed to propose a new technique to monitor and manage these events, to provide an early evaluation and correction to the estimated SUV value through a SUV correction coefficient. METHODS: A cohort of 70 patients undergoing 18F- FDG PET/CT examinations was enrolled. Two portable detectors were secured on the patients' arms. The dose-rate (DR) time curves on the injected DRin and contralateral DRcon arm were acquired during the first 10 min of injection. Such data were processed to calculate the parameters ΔpinNOR = (DRinmax- DRinmean)/DRinmax and ΔRt = (DRin(t) - DRcon(t)), where DRinmax is the maximum DR value, DRinmean is the average DR value in the injected arm. OLINDA software allowed dosimetric estimation of the dose in the extravasation region. The estimated residual activity in the extravasation site allowed the evaluation of the SUV's correction value and to define an SUV correction coefficient. RESULTS: Four cases of extravasations were identified for which ΔRt [(390 ± 26) µSv/h], while ΔRt [(150 ± 22) µSv/h] for abnormal and ΔRt [(24 ± 11) µSv/h] for normal cases. The ΔpinNOR showed an average value of (0.44 ± 0.05) for extravasation cases and an average value of (0.91 ± 0.06) and (0.77 ± 0.23) in normal and abnormal classes, respectively. The percentage of SUV reduction (SUV%CR) ranges between 0.3% and 6%. The calculated self-tissue dose values range from 0.027 to 0.573 Gy, according to the segmentation modality. A similar correlation between the inverse of ΔpinNOR and the normalised ΔRt with the SUV correction coefficient was found. CONCLUSIONS: The proposed metrics allowed to characterised the extravasation events in the first few minutes after the injection, providing an early SUV correction when necessary. We also assume that the characterisation of the DR-time curve of the injection arm is sufficient for the detection of extravasation events. Further validation of these hypotheses and key metrics is recommended in larger cohorts.

4.
Diagnostics (Basel) ; 13(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37510195

RESUMO

Anterior segment optical coherence tomography (AS-OCT) allows the explore not only the anterior chamber but also the front part of the vitreous cavity. Our cross-sectional single-centre study investigated whether AS-OCT can distinguish between vitreous involvement due to vitreoretinal lymphoma (VRL) and vitritis in uveitis. We studied AS-OCT images from 28 patients (11 with biopsy-proven VRL and 17 with differential diagnosis uveitis) using publicly available radiomics software written in MATLAB. Patients were divided into two balanced groups: training and testing. Overall, 3260/3705 (88%) AS-OCT images met our defined quality criteria, making them eligible for analysis. We studied five different sets of grey-level samplings (16, 32, 64, 128, and 256 levels), finding that 128 grey levels performed the best. We selected the five most effective radiomic features ranked by the ability to predict the class (VRL or uveitis). We built a classification model using the xgboost python function; through our model, 87% of eyes were correctly diagnosed as VRL or uveitis, regardless of exam technique or lens status. Areas under the receiver operating characteristic curves (AUC) in the 128 grey-level model were 0.95 [CI 0.94, 0.96] and 0.84 for training and testing datasets, respectively. This preliminary retrospective study highlights how AS-OCT can support ophthalmologists when there is clinical suspicion of VRL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA