Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360919

RESUMO

Hypoxia is characterized by an inadequate supply of oxygen to tissues, and hypoxic regions are commonly found in solid tumors. The cellular response to hypoxic conditions is mediated through the activation of hypoxia-inducible factors (HIFs) that control the expression of a large number of target genes. Recent studies have shown that the receptor for advanced glycation end products (RAGE) participates in hypoxia-dependent cellular adaptation. We review recent evidence on the role of RAGE signaling in tumor biology under hypoxic conditions.


Assuntos
Hipóxia Celular , Produtos Finais de Glicação Avançada/metabolismo , Neoplasias/metabolismo , Receptor para Produtos Finais de Glicação Avançada/fisiologia , Animais , Linhagem Celular Tumoral , Humanos
2.
Int J Mol Sci ; 21(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256110

RESUMO

Despite recent progresses in its treatment, malignant cutaneous melanoma remains a cancer with very poor prognosis. Emerging evidences suggest that the receptor for advance glycation end products (RAGE) plays a key role in melanoma progression through its activation in both cancer and stromal cells. In tumors, RAGE activation is fueled by numerous ligands, S100B and HMGB1 being the most notable, but the role of many other ligands is not well understood and should not be underappreciated. Here, we provide a review of the current role of RAGE in melanoma and conclude that targeting RAGE in melanoma could be an approach to improve the outcomes of melanoma patients.


Assuntos
Melanoma/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Animais , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Melanoma/genética , Melanoma/patologia , Mutação/genética , Receptor para Produtos Finais de Glicação Avançada/química , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
3.
Int J Mol Sci ; 21(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086527

RESUMO

The receptor for advanced glycation end products (RAGE) contributes to many cellular aspects of pancreatic cancer including cell proliferation, migration, and survival. Studies have shown that RAGE activation by its ligands promotes pancreatic tumor growth by stimulating both cell proliferation and migration. In this study, we investigated the effect of RAGE up-regulation on the proliferation and migration of the human pancreatic cancer Panc-1 cell-line. We show that moderate overexpression of RAGE in Panc-1 cells results in increased cell proliferation, but decreased cell migration. The observed cellular changes were confirmed to be RAGE-specific and reversible by using RAGE-specific siRNAs and the small molecule RAGE inhibitor FPS-ZM1. At the molecular level, we show that RAGE up-regulation was associated with decreased activity of FAK, Akt, Erk1/2, and NF-κB signaling pathways and greatly reduced levels of α2 and ß1 integrin expression, which is in agreement with the observed decreases in cell migration. We also demonstrate that RAGE up-regulation changes the expression of key molecular markers of epithelial-to-mesenchymal transition (EMT). Our results suggest that in the absence of stimulation by external ligands, RAGE up-regulation can differently modulate cell proliferation and migration in pancreatic cancer cells and regulates partly EMT.


Assuntos
Movimento Celular/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Receptor para Produtos Finais de Glicação Avançada/genética , Regulação para Cima/genética , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Transição Epitelial-Mesenquimal , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina alfa2/metabolismo , Integrina beta1/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Vimentina/metabolismo , Neoplasias Pancreáticas
4.
Biochim Biophys Acta ; 1852(12): 2706-11, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26435083

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with low survival rates. Current therapeutic treatments have very poor response rates due to the high inherent chemoresistance of the pancreatic-cancer cells. Recent studies have suggested that the receptor for advanced glycation end products (RAGE) and its S100 protein ligands play important roles in the progression of PDAC. We will discuss the potential role of S100 proteins and their receptor, RAGE, in the development and progression of pancreatic cancer.

5.
Biochim Biophys Acta ; 1842(7): 1017-27, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24613454

RESUMO

The formation of melanoma metastases from primary tumor cells is a complex phenomenon that involves the regulation of multiple genes. We have previously shown that the receptor for advanced glycation end products (RAGE) was up-regulated in late metastatic stages of melanoma patient samples and we hypothesized that up-regulation of RAGE in cells forming a primary melanoma tumor could contribute to the metastatic switch of these cells. To test our hypothesis, we overexpressed RAGE in the WM115 human melanoma cell line that was established from a primary melanoma tumor of a patient. We show here that overexpression of RAGE in these cells is associated with mesenchymal-like morphologies of the cells. These cells demonstrate higher migration abilities and reduced proliferation properties, suggesting that the cells have switched to a metastatic phenotype. At the molecular level, we show that RAGE overexpression is associated with the up-regulation of the RAGE ligand S100B and the down-regulation of p53, ERK1/2, cyclin E and NF-kB. Our study supports a role of RAGE in the metastatic switch of melanoma cells.


Assuntos
Melanoma/metabolismo , Melanoma/patologia , Receptor para Produtos Finais de Glicação Avançada/biossíntese , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Ciclina E/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases/genética , Melanoma/genética , NF-kappa B/genética , Metástase Neoplásica , Fenótipo , Receptor para Produtos Finais de Glicação Avançada/genética , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética
6.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 5): 1176-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25945582

RESUMO

S100B is a damage-associated molecular pattern protein that, when released into the extracellular milieu, triggers initiation of the inflammatory response through the receptor for advanced glycation end products (RAGE). Recognition of S100B is accomplished via the amino-terminal variable immunoglobulin domain (V-domain) of RAGE. To gain insights into this interaction, a complex between S100B and a 15-amino-acid peptide derived from residues 54-68 of the V-domain was crystallized. The X-ray crystal structure was solved to 2.55 Å resolution. There are two dimers of S100B and one peptide in the asymmetric unit. The binding interface of this peptide is compared with that found in the complex between S100B and the 12-amino-acid CapZ-derived peptide TRTK-12. This comparison reveals that although the peptides adopt completely different backbone structures, the residues buried at the interface interact with S100B in similar regions to form stable complexes. The binding affinities of S100B for the intact wild-type V-domain and a W61A V-domain mutant were determined to be 2.7 ± 0.5 and 1.3 ± 0.7 µM, respectively, using fluorescence titration experiments. These observations lead to a model whereby conformational flexibility in the RAGE receptor allows the adoption of a binding conformation for interaction with the stable hydrophobic groove on the surface of S100B.


Assuntos
Proteína de Capeamento de Actina CapZ/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptor para Produtos Finais de Glicação Avançada/química , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/química , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína
7.
Amino Acids ; 46(4): 873-82, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24366600

RESUMO

The leptin receptor antagonist peptide Allo-aca exhibits picomolar activities in various cellular systems and sub-mg/kg subcutaneous efficacies in animal models making it a prime drug candidate and target validation tool. Here we identified the biochemical basis for its remarkable in vivo activity. Allo-aca decomposed within 30 min in pooled human serum and was undetectable beyond the same time period from mouse plasma during pharmacokinetic measurements. The C max of 8.9 µg/mL at 5 min corresponds to approximately 22% injected peptide present in the circulation. The half-life was extended to over 2 h in bovine vitreous fluid and 10 h in human tears suggesting potential efficacy in ophthalmic diseases. The peptide retained picomolar anti-proliferation activity against a chronic myeloid leukemia cell line; addition of a C-terminal biotin label increased the IC50 value by approximately 200-fold. In surface plasmon resonance assays with the biotin-labeled peptide immobilized to a NeutrAvidin-coated chip, Allo-aca exhibited exceptionally tight binding to the binding domain of the human leptin receptor with ka = 5 × 10(5) M(-1) s(-1) and kdiss = 1.5 × 10(-4) s(-1) values. Peptides excel in terms of high activity and selectivity to their targets, and may activate or inactivate receptor functions considerably longer than molecular turnovers that take place in experimental animals.


Assuntos
Leptina/antagonistas & inibidores , Peptídeos/química , Receptores para Leptina/química , Animais , Bovinos , Linhagem Celular Tumoral , Desenho de Fármacos , Feminino , Meia-Vida , Humanos , Cinética , Leptina/química , Leptina/metabolismo , Camundongos , Peptídeos/sangue , Peptídeos/metabolismo , Peptídeos/farmacocinética , Receptores para Leptina/metabolismo
8.
Sci Rep ; 13(1): 2543, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782016

RESUMO

Aging is associated with chronic systemic inflammation largely due to increased myelopoiesis, which in turn increases risk for vascular disease. We have previously shown evidence for the therapeutic potential of Angiotensin-(1-7) (Ang-(1-7)) in reversing vasoreparative dysfunction in aging. This study tested the hypothesis that ischemic vascular repair in aging by Ang-(1-7) involves attenuation of myelopoietic potential in the bone marrow and decreased mobilization of inflammatory cells. Young or Old male mice of age 3-4 and 22-24 months, respectively, received Ang-(1-7) (1 µg/kg/min, s.c.) for four weeks. Myelopoiesis was evaluated in the bone marrow (BM) cells by carrying out the colony forming unit (CFU-GM) assay followed by flow cytometry of monocyte-macrophages. Expression of pro-myelopoietic factors and alarmins in the hematopoietic progenitor-enriched BM cells was evaluated. Hindlimb ischemia (HLI) was induced by femoral ligation, and mobilization of monocytes into the blood stream was determined. Blood flow recovery was monitored by Laser Doppler imaging and infiltration of inflammatory cells was evaluated by immunohistochemistry. BM cells from Old mice generated a higher number of monocytes (Ly6G-CD11b+Ly6Chi) and M1 macrophages (Ly6ChiF4/80+) compared to that of Young, which was reversed by Ang-(1-7). Gene expression of selected myelopoietic factors, alarmins (S100A8, S100A9, S100A14 and HMGb1) and the receptor for alarmins, RAGE, was higher in the Old hematopoietic progenitor-enriched BM cells compared to the Young. Increased expressions of these factors were decreased by Ang-(1-7). Ischemia-induced mobilization of monocytes was higher in Old mice with decreased blood flow recovery and increased infiltration of monocyte-macrophages compared to the Young, all of which were reversed by Ang-(1-7). Enhanced ischemic vascular repair by Ang-(1-7) in aging is largely by decreasing the generation and recruitment of inflammatory monocyte-macrophages to the areas of ischemic injury. This is associated with decreased alarmin signaling in the BM-hematopoietic progenitor cells.


Assuntos
Alarminas , Mielopoese , Camundongos , Masculino , Animais , Células-Tronco Hematopoéticas , Isquemia , Inflamação
9.
Biomolecules ; 13(8)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37627239

RESUMO

Pancreatic cancer remains a disease that is very difficult to treat. S100 proteins are small calcium binding proteins with diverse intra- and extracellular functions that modulate different aspects of tumorigenesis, including tumor growth and metastasis. High mobility group box 1 (HMGB1) protein is a multifaceted protein that also actively influences the development and progression of tumors. In this study, we investigate the possible correlations, at the transcript level, between S100s and HMGB1 in pancreatic cancer. For this purpose, we calculated Pearson's correlations between the transcript levels of 13 cancer-related S100 genes and HMGB1 in a cDNA array containing 19 pancreatic cancer tumor samples, and in 8 human pancreatic cancer cell lines. Statistically significant positive correlations were found in 5.5% (5 out of 91) and 37.4% (34 of 91) of the possible S100/S100 or S100/HMGB1 pairs in cells and tumors, respectively. Our data suggest that many S100 proteins crosstalk in pancreatic tumors either with other members of the S100 family, or with HMGB1. These newly observed interdependencies may be used to further the characterization of pancreatic tumors based on S100 and HMGB1 transcription profiles.


Assuntos
Proteína HMGB1 , Neoplasias Pancreáticas , Humanos , Proteína HMGB1/genética , Neoplasias Pancreáticas/genética , Carcinogênese , Proteínas S100/genética , Neoplasias Pancreáticas
10.
Arch Biochem Biophys ; 528(2): 185-96, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23079546

RESUMO

Physiologically relevant reactive carbonyl compounds vary greatly in their glycation reactivity and the resulting advanced glycation endproducts (AGE) are likely to have distinct structural and biological properties. We characterized a panel of twenty AGE-BSA preparations in terms of (i) their biophysical properties, (ii) their binding to the receptor for advanced glycation endproducts (RAGE) and galectin-3, and (iii) their effects on cellular proliferation. We could establish correlations between lysine glycation and changes in secondary structure. Circular dichroism and differential scanning calorimetry experiments showed that glycation causes albumin to adopt folding properties of a molten globule. Binding studies between AGE-albumin and RAGE or galectin-3 indicate that binding to the isolated receptor domains was weak. Only AGE compounds derived by glycation with ribose were able to bind tightly (K(d) < 10 µM) to both AGE receptors. Cell based assays using an engineered melanoma cell line demonstrated correlations between the extent of (i) lysine side chain modification, (ii) ß-sheet content and (iii) albumin multimerization with stimulation of cell proliferation. However, in addition to structural properties of the protein, the chemical structures of the AGE-modifications were important for receptor binding and biological activity as well.


Assuntos
Receptores Imunológicos/metabolismo , Albumina Sérica/química , Albumina Sérica/metabolismo , Animais , Sítios de Ligação , Fenômenos Biofísicos , Bovinos , Linhagem Celular , Proliferação de Células , Galectina 3/química , Galectina 3/metabolismo , Produtos Finais de Glicação Avançada , Glicosilação , Humanos , Indicadores e Reagentes , Lisina/química , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Análise Espectral , Termodinâmica , Resposta a Proteínas não Dobradas , Albumina Sérica Glicada
11.
Biomolecules ; 11(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915939

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains a very difficult cancer to treat. Recent in vitro and in vivo studies suggest that the activation of the receptor for advanced glycation end products (RAGE) by its ligands stimulates pancreatic cancer cell proliferation and tumor growth. Additional studies show that, in the RAGE ligand, the high mobility group box 1 (HMGB1) protein plays an important role in chemoresistance against the cytotoxic agent gemcitabine by promoting cell survival through increased autophagy. We hypothesized that blocking the RAGE/HMGB1 interaction would enhance the cytotoxic effect of gemcitabine by reducing cell survival and autophagy. Using a preclinical mouse model of PDAC and a monoclonal antibody (IgG 2A11) as a RAGE inhibitor, we demonstrate that RAGE inhibition concurrent with gemcitabine treatment enhanced the cytotoxic effect of gemcitabine. The combination of IgG 2A11 and gemcitabine resulted in decreased autophagy compared to treatment with gemcitabine combined with control antibodies. Notably, we also observed that RAGE inhibition protected against excessive weight loss during treatment with gemcitabine. Our data suggest that the combination of gemcitabine with a RAGE inhibitor could be a promising therapeutic approach for the treatment of pancreatic cancer and needs to be further investigated.


Assuntos
Autofagia/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Proteína HMGB1/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Poli(ADP-Ribose) Polimerases/metabolismo , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Receptor para Produtos Finais de Glicação Avançada/imunologia , Transplante Homólogo , Gencitabina
12.
Biochim Biophys Acta ; 1793(6): 993-1007, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19121341

RESUMO

The Receptor for Advanced Glycation Endproducts (RAGE) is a multi-ligand receptor of the immunoglobulin family. RAGE interacts with structurally different ligands probably through the oligomerization of the receptor on the cell surface. However, the exact mechanism is unknown. Among RAGE ligands are members of the S100 protein family. S100 proteins are small calcium binding proteins with high structural homology. Several members of the family have been shown to interact with RAGE in vitro or in cell-based assays. Interestingly, many RAGE ligands appear to interact with distinct domains of the extracellular portion of RAGE and to trigger various cellular effects. In this review, we summarize the modes of S100 protein-RAGE interaction with regard to their cellular functions.


Assuntos
Isoformas de Proteínas/metabolismo , Receptores Imunológicos/metabolismo , Proteínas S100/metabolismo , Animais , Humanos , Ligantes , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/química , Receptores Imunológicos/genética , Proteínas S100/genética
13.
Biosci Rep ; 40(1)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31912881

RESUMO

The receptor for advanced glycation end products (RAGE) recognizes damage-associated molecular patterns (DAMPs) and plays a critical role for the innate immune response and sterile tissue inflammation. RAGE overexpression is associated with diabetic complications, neurodegenerative diseases and certain cancers. Yet, the molecular mechanism of ligand recognition by RAGE is insufficiently understood to rationalize the binding of diverse ligands. The N-terminal V-type Ig-domain of RAGE contains a triad of tryptophan residue; Trp51, Trp61 and Trp72. The role of these three Trp residues for domain folding, stability and binding of the RAGE ligand S100B was investigated through site-directed mutagenesis, UV/VIS, CD and fluorescence spectrometry, protein-protein interaction studies, and X-ray crystallography. The data show that the Trp triad stabilizes the folded V-domain by maintaining a short helix in the structure. Mutation of any Trp residue increases the structural plasticity of the domain. Residues Trp61 and Trp72 are involved in the binding of S100B, yet they are not strictly required for S100B binding. The crystal structure of the RAGE-derived peptide W72 in complex with S100B showed that Trp72 is deeply buried in a hydrophobic depression on the S100B surface. The studies suggest that multiple binding modes between RAGE and S100B exist and point toward a not previously recognized role of the Trp residues for RAGE-ligand binding. The Trp triad of the V-domain appears to be a suitable target for novel RAGE inhibitors, either in the form of monoclonal antibodies targeting this epitope, or small organic molecules.


Assuntos
Receptor para Produtos Finais de Glicação Avançada/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Mutação , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Receptor para Produtos Finais de Glicação Avançada/química , Receptor para Produtos Finais de Glicação Avançada/genética , Subunidade beta da Proteína Ligante de Cálcio S100/química , Relação Estrutura-Atividade , Triptofano
14.
Rev Neurosci ; 20(2): 95-110, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19774788

RESUMO

Hallmarks of Alzheimer's disease (AD) include the accumulation of amyloid beta peptide (Abeta), hyperphosphorylation of tau protein, and increased inflammatory activity in the hippocampus and cerebral cortex. The receptor for advanced glycation endproducts (RAGE) has been shown to interact with Abeta and to modulate Abeta transport across the blood-brain barrier. Furthermore, RAGE is upregulated at sites of inflammation and its activation results in distinct intracellular signaling cascades in respect to Abeta conformers. Besides Abeta, RAGE interacts with several members of the calcium binding S100 protein family, amphoterin and advanced glycation endproducts. Mounting evidence suggests that RAGE is a key player in the signaling pathways triggered by Abeta and S100 proteins in AD. In this review, we discuss recent discoveries about the crosstalk between RAGE, Abeta and S100 proteins in the pathophysiology of AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Receptores Imunológicos/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Humanos , Modelos Biológicos , Receptor para Produtos Finais de Glicação Avançada , Proteínas S100/metabolismo
15.
J Biol Inorg Chem ; 14(2): 179-91, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18923851

RESUMO

To evaluate the potential of using heme-containing lipocalin nitrophorin 1 (NP1) as a template for protein engineering, we have replaced the native axial heme-coordinating histidine residue with glycine, alanine, and cysteine. We report here the characterization of the cysteine mutant H60C_NP1 by spectroscopic and crystallographic methods. The UV/vis, resonance Raman, and magnetic circular dichroism spectra suggest weak thiolate coordination of the ferric heme in the H60C_NP1 mutant. Reduction to the ferrous state resulted in loss of cysteine coordination, while addition of exogenous imidazole ligands gave coordination changes that varied with the ligand. Depending on the substitution of the imidazole, we could distinguish three heme coordination states: five-coordinate monoimidazole, six-coordinate bisimidazole, and six-coordinate imidazole/thiolate. Ligand binding affinities were measured and found to be generally 2-3 orders of magnitude lower for the H60C mutant relative to NP1. Two crystal structures of the H60C_NP1 in complex with imidazole and histamine were solved to 1.7- and 1.96-A resolution, respectively. Both structures show that the H60C mutation is well tolerated by the protein scaffold and suggest that heme-thiolate coordination in H60C_NP1 requires some movement of the heme within its binding cavity. This adjustment may be responsible for the ease with which the engineered heme-thiolate coordination can be displaced by exogenous ligands.


Assuntos
Cisteína/metabolismo , Heme/metabolismo , Hemeproteínas/química , Hemeproteínas/metabolismo , Histidina/metabolismo , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Mutação , Conformação Proteica , Engenharia de Proteínas , Espectrofotometria Ultravioleta , Análise Espectral Raman
16.
Gen Physiol Biophys ; 28 Spec No Focus: F65-75, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20093728

RESUMO

The Receptor for Advanced Glycation Endproducts (RAGE) has been suggested to play an important role in melanoma. Animal studies with anti-RAGE antibodies have shown that RAGE blockade leads to reduced melanoma tumor growth and metastasis formation. RAGE is a multiligand receptor and among its ligands are the Ca-binding S100 proteins. Certain S100 proteins are differentially expressed in melanoma. For example, S100B is currently used as a reliable prognostic biomarker in patients with malignant melanoma. We have surveyed 40 human melanoma tumor samples for the transcription of RAGE and five of its known S100 protein ligands. Compared to normal skin tissue, we found highly significant (p < 0.0001) over-expression of S100B and underexpression of S100A2, whereas no significant difference in transcription of S100A6 and S100A10 was observed. RAGE showed slightly increased transcription in stage IV. Between individual tumor samples tremendous differences in transcription of the S100 proteins were observed, whereas RAGE expression showed relatively little variance. We also analyzed three well-characterized melanoma cell lines for S100 and RAGE expression. The S100 protein transcription profile showed clear differences between cultured melanoma cells and melanoma tumor tissue. Detailed profiling of S100 and RAGE transcription in melanoma tumors in combination with imunohisto-chemical and clinical data may lead to improved molecular diagnostic of melanoma and subsequently may facilitate improved treatment in the future.


Assuntos
Anexina A2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fatores Quimiotáticos/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteínas S100/metabolismo , Transcrição Gênica , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Humanos , Ligantes , Masculino , Pessoa de Meia-Idade , Proteína A6 Ligante de Cálcio S100
17.
J Mol Biol ; 357(5): 1449-70, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16490206

RESUMO

A model binding site was used to investigate charge-charge interactions in molecular docking. This simple site, a small (180A(3)) engineered cavity in cyctochrome c peroxidase (CCP), is negatively charged and completely buried from solvent, allowing us to explore the balance between electrostatic energy and ligand desolvation energy in a system where many of the common approximations in docking do not apply. A database with about 5300 molecules was docked into this cavity. Retrospective testing with known ligands and decoys showed that overall the balance between electrostatic interaction and desolvation energy was captured. More interesting were prospective docking scre"ens that looked for novel ligands, especially those that might reveal problems with the docking and energy methods. Based on screens of the 5300 compound database, both high-scoring and low-scoring molecules were acquired and tested for binding. Out of 16 new, high-scoring compounds tested, 15 were observed to bind. All of these were small heterocyclic cations. Binding constants were measured for a few of these, they ranged between 20microM and 60microM. Crystal structures were determined for ten of these ligands in complex with the protein. The observed ligand geometry corresponded closely to that predicted by docking. Several low-scoring alkyl amino cations were also tested and found to bind. The low docking score of these molecules owed to the relatively high charge density of the charged amino group and the corresponding high desolvation penalty. When the complex structures of those ligands were determined, a bound water molecule was observed interacting with the amino group and a backbone carbonyl group of the cavity. This water molecule mitigates the desolvation penalty and improves the interaction energy relative to that of the "naked" site used in the docking screen. Finally, six low-scoring neutral molecules were also tested, with a view to looking for false negative predictions. Whereas most of these did not bind, two did (phenol and 3-fluorocatechol). Crystal structures for these two ligands in complex with the cavity site suggest reasons for their binding. That these neutral molecules do, in fact bind, contradicts previous results in this site and, along with the alkyl amines, provides instructive false negatives that help identify weaknesses in our scoring functions. Several improvements of these are considered.


Assuntos
Citocromo-c Peroxidase/química , Modelos Moleculares , Conformação Proteica , Amidinas/química , Aminas/química , Sítios de Ligação , Cristalografia por Raios X , Citocromo-c Peroxidase/genética , Citocromo-c Peroxidase/metabolismo , Ésteres/química , Ligantes , Dados de Sequência Molecular , Estrutura Molecular
18.
Adv Clin Chem ; 72: 205-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26471084

RESUMO

In vivo modification of proteins by molecules with reactive carbonyl groups leads to intermediate and advanced glycation end products (AGE). Glucose is a significant glycation reagent due to its high physiological concentration and poorly controlled diabetics show increased albumin glycation. Increased levels of glycated and AGE-modified albumin have been linked to diabetic complications, neurodegeneration, and vascular disease. This review discusses glycated albumin formation, structural consequences of albumin glycation on drug binding, removal of circulating AGE by several scavenger receptors, as well as AGE-induced proinflammatory signaling through activation of the receptor for AGE. Analytical methods for quantitative detection of protein glycation and AGE formation are compared. Finally, the use of glycated albumin as a novel clinical marker to monitor glycemic control is discussed and compared to glycated hemoglobin (HbA1c) as long-term indicator of glycemic status.


Assuntos
Biomarcadores/sangue , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Albumina Sérica/metabolismo , Complicações do Diabetes/sangue , Produtos Finais de Glicação Avançada , Humanos , Albumina Sérica Glicada
19.
Curr Protein Pept Sci ; 3(4): 365-97, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12370002

RESUMO

Protein tyrosine phosphatases, SH2 and PTB domains are crucial elements for cellular signal transduction and regulation. Much effort has been directed towards elucidating their specificity in the past decade using a variety of approaches. Combinatorial library methods have contributed significantly to the understanding of substrate and ligand specificity of phosphoprotein recognizing domains. This review gives a brief overview of the structural characteristics of protein tyrosine phosphatases, SH2 and PTB domains and their binding to phosphopeptides. The chemical synthesis of peptides containing phosphotyrosine or phosphotyrosine mimics and the various formats of synthesis and deconvolution of combinatorial libraries are explained in detail. Examples are given as how different combinatorial libraries have been used to study the interaction of phosphopeptides with SH2 domains and phosphatases. The intrinsic advantages and difficulties of library synthesis, screening and deconvolution are pointed out. Finally, some experimental results on the substrate specificity of protein tyrosine phosphatase 1B and the SH2 domain of the adaptor protein Grb-2 are summarized and discussed.


Assuntos
Técnicas de Química Combinatória , Biblioteca de Peptídeos , Fosfopeptídeos/metabolismo , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , Sítios de Ligação , Modelos Moleculares , Dados de Sequência Molecular , Fosfopeptídeos/química , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/genética , Especificidade por Substrato
20.
Eur J Pharm Sci ; 59: 58-68, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24751671

RESUMO

Glycation alters the drug binding properties of serum proteins and could affect free drug concentrations in diabetic patients with elevated glycation levels. We investigated the effect of bovine serum albumin glycation by eight physiologically relevant glycation reagents (glucose, ribose, carboxymethyllysine, acetoin, methylglyoxal, glyceraldehyde, diacetyl and glycolaldehyde) on diclofenac drug binding. We used this non-steroidal anti-inflammatory drug diclofenac as a paradigm for acidic drugs with high serum binding and because of its potential cardiovascular risks in diabetic patients. Isothermal titration calorimetry showed that glycation reduced the binding affinity Ka of serum albumin and diclofenac 2 to 6-fold by reducing structural rigidity of albumin. Glycation affected the number of drug binding sites in a glycation reagent dependent manner and lead to a 25% decrease for most reagent, expect for ribose, with decreased by 60% and for the CML-modification, increased the number of binding sites by 60%. Using isothermal titration calorimetry and differential scanning calorimetry we derived the complete thermodynamic characterization of diclofenac binding to all glycated BSA samples. Our results suggest that glycation in diabetic patients could significantly alter the pharmacokinetics of the widely used over-the-counter NSDAI drug diclofenac and with possibly negative implications for patients.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Diclofenaco/metabolismo , Soroalbumina Bovina/metabolismo , Albumina Sérica/metabolismo , Anti-Inflamatórios não Esteroides/química , Calorimetria , Diclofenaco/química , Produtos Finais de Glicação Avançada , Glicosilação , Ligação Proteica , Conformação Proteica , Albumina Sérica/química , Soroalbumina Bovina/química , Termodinâmica , Albumina Sérica Glicada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA