Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 601(7894): 579-583, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022610

RESUMO

Efforts to date the oldest modern human fossils in eastern Africa, from Omo-Kibish1-3 and Herto4,5 in Ethiopia, have drawn on a variety of chronometric evidence, including 40Ar/39Ar ages of stratigraphically associated tuffs. The ages that are generally reported for these fossils are around 197 thousand years (kyr) for the Kibish Omo I3,6,7, and around 160-155 kyr for the Herto hominins5,8. However, the stratigraphic relationships and tephra correlations that underpin these estimates have been challenged6,8. Here we report geochemical analyses that link the Kamoya's Hominid Site (KHS) Tuff9, which conclusively overlies the member of the Omo-Kibish Formation that contains Omo I, with a major explosive eruption of Shala volcano in the Main Ethiopian Rift. By dating the proximal deposits of this eruption, we obtain a new minimum age for the Omo fossils of 233 ± 22 kyr. Contrary to previous arguments6,8, we also show that the KHS Tuff does not correlate with another widespread tephra layer, the Waidedo Vitric Tuff, and therefore cannot anchor a minimum age for the Herto fossils. Shifting the age of the oldest known Homo sapiens fossils in eastern Africa to before around 200 thousand years ago is consistent with independent evidence for greater antiquity of the modern human lineage10.


Assuntos
Sedimentos Geológicos , Hominidae , África Oriental , Animais , Etiópia , Fósseis , Sedimentos Geológicos/análise , Humanos
2.
Proc Natl Acad Sci U S A ; 117(43): 26651-26659, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33046643

RESUMO

The 1257 CE eruption of Mount Samalas (Indonesia) is the source of the largest stratospheric injection of volcanic gases in the Common Era. Sulfur dioxide emissions produced sulfate aerosols that cooled Earth's climate with a range of impacts on society. The coemission of halogenated species has also been speculated to have led to wide-scale ozone depletion. Here we present simulations from HadGEM3-ES, a fully coupled Earth system model, with interactive atmospheric chemistry and a microphysical treatment of sulfate aerosol, used to assess the chemical and climate impacts from the injection of sulfur and halogen species into the stratosphere as a result of the Mt. Samalas eruption. While our model simulations support a surface air temperature response to the eruption of the order of -1°C, performing well against multiple reconstructions of surface temperature from tree-ring records, we find little evidence to support significant injections of halogens into the stratosphere. Including modest fractions of the halogen emissions reported from Mt. Samalas leads to significant impacts on the composition of the atmosphere and on surface temperature. As little as 20% of the halogen inventory from Mt. Samalas reaching the stratosphere would result in catastrophic ozone depletion, extending the surface cooling caused by the eruption. However, based on available proxy records of surface temperature changes, our model results support only very minor fractions (1%) of the halogen inventory reaching the stratosphere and suggest that further constraints are needed to fully resolve the issue.

3.
Proc Natl Acad Sci U S A ; 110(42): 16742-7, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24082132

RESUMO

Polar ice core records attest to a colossal volcanic eruption that took place ca. A.D. 1257 or 1258, most probably in the tropics. Estimates based on sulfate deposition in these records suggest that it yielded the largest volcanic sulfur release to the stratosphere of the past 7,000 y. Tree rings, medieval chronicles, and computational models corroborate the expected worldwide atmospheric and climatic effects of this eruption. However, until now there has been no convincing candidate for the mid-13th century "mystery eruption." Drawing upon compelling evidence from stratigraphic and geomorphic data, physical volcanology, radiocarbon dating, tephra geochemistry, and chronicles, we argue the source of this long-sought eruption is the Samalas volcano, adjacent to Mount Rinjani on Lombok Island, Indonesia. At least 40 km(3) (dense-rock equivalent) of tephra were deposited and the eruption column reached an altitude of up to 43 km. Three principal pumice fallout deposits mantle the region and thick pyroclastic flow deposits are found at the coast, 25 km from source. With an estimated magnitude of 7, this event ranks among the largest Holocene explosive eruptions. Radiocarbon dates on charcoal are consistent with a mid-13th century eruption. In addition, glass geochemistry of the associated pumice deposits matches that of shards found in both Arctic and Antarctic ice cores, providing compelling evidence to link the prominent A.D. 1258/1259 ice core sulfate spike to Samalas. We further constrain the timing of the mystery eruption based on tephra dispersal and historical records, suggesting it occurred between May and October A.D. 1257.

4.
Nat Geosci ; 15(10): 805-811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36254302

RESUMO

Despite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from ~620,000 to 275,000 years bp (episodes 1-6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7-9 (~275,000-60,000 years bp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence of Homo sapiens in eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10-12 (~60,000-10,000 years bp) could have facilitated the global dispersal of H. sapiens.

5.
Sci Rep ; 6: 34868, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27721477

RESUMO

Large explosive eruptions inject volcanic gases and fine ash to stratospheric altitudes, contributing to global cooling at the Earth's surface and occasionally to ozone depletion. The modelling of the climate response to these strong injections of volatiles commonly relies on ice-core records of volcanic sulphate aerosols. Here we use an independent geochemical approach which demonstrates that the great 1257 eruption of Samalas (Lombok, Indonesia) released enough sulphur and halogen gases into the stratosphere to produce the reported global cooling during the second half of the 13th century, as well as potential substantial ozone destruction. Major, trace and volatile element compositions of eruptive products recording the magmatic differentiation processes leading to the 1257 eruption indicate that Mt Samalas released 158 ± 12 Tg of sulphur dioxide, 227 ± 18 Tg of chlorine and a maximum of 1.3 ± 0.3 Tg of bromine. These emissions stand as the greatest volcanogenic gas injection of the Common Era. Our findings not only provide robust constraints for the modelling of the combined impact of sulphur and halogens on stratosphere chemistry of the largest eruption of the last millennium, but also develop a methodology to better quantify the degassing budgets of explosive eruptions of all magnitudes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA