Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542528

RESUMO

Spider silk has extraordinary mechanical properties, displaying high tensile strength, elasticity, and toughness. Given the high performance of natural fibers, one of the long-term goals of the silk community is to manufacture large-scale synthetic spider silk. This process requires vast quantities of recombinant proteins for wet-spinning applications. Attempts to synthesize large amounts of native size recombinant spidroins in diverse cell types have been unsuccessful. In these studies, we design and express recombinant miniature black widow MaSp1 spidroins in bacteria that incorporate the N-terminal and C-terminal domain (NTD and CTD), along with varying numbers of codon-optimized internal block repeats. Following spidroin overexpression, we perform quantitative analysis of the bacterial proteome to identify proteins associated with spidroin synthesis. Liquid chromatography with tandem mass spectrometry (LC MS/MS) reveals a list of molecular targets that are differentially expressed after enforced mini-spidroin production. This list included proteins involved in energy management, proteostasis, translation, cell wall biosynthesis, and oxidative stress. Taken together, the purpose of this study was to identify genes within the genome of Escherichia coli for molecular targeting to overcome bottlenecks that throttle spidroin overexpression in microorganisms.


Assuntos
Fibroínas , Aranhas , Animais , Fibroínas/química , Proteômica , Espectrometria de Massas em Tandem , Seda/química , Proteínas Recombinantes/química , Bactérias , Aranhas/genética
2.
J Exp Biol ; 225(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35188212

RESUMO

Unlike many animals that reduce activity during fasting, northern elephant seals (NES) undergo prolonged fasting during energy-intensive life-history stages such as reproduction and molting, fueling fasting energy needs by mobilizing fat stores accrued during foraging. NES display several unique metabolic features such as high fasting metabolic rates, elevated blood lipid and high-density lipoprotein (HDL) cholesterol levels, efficient protein sparing and resistance to oxidative stress during fasting. However, the cellular mechanisms that regulate these adaptations are still not fully understood. To examine how metabolic coordination is achieved during prolonged fasting, we profiled changes in blubber, skeletal muscle and plasma proteomes of adult female NES over a 5 week fast associated with molting. We found that while blubber and muscle proteomes were remarkably stable over fasting, over 50 proteins changed in abundance in plasma, including those associated with lipid storage, mobilization, oxidation and transport. Apolipoproteins dominated the blubber, plasma and muscle proteome responses to fasting. APOA4, APOE and APOC3, which are associated with lipogenesis and triglyceride accumulation, decreased, while APOA1, APOA2 and APOM, which are associated with lipid mobilization and HDL function, increased over fasting. Our findings suggest that changes in apolipoprotein composition may underlie the maintenance of high HDL levels and, together with adipokines and hepatokines that facilitate lipid catabolism, may mediate the metabolic transitions between feeding and fasting in NES. Many of these proteins have not been previously studied in this species and provide intriguing hypotheses about metabolic regulation during prolonged fasting in mammals.


Assuntos
Focas Verdadeiras , Tecido Adiposo/metabolismo , Animais , Jejum/fisiologia , Feminino , Muda , Proteoma/metabolismo , Focas Verdadeiras/fisiologia
3.
Molecules ; 26(16)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34443676

RESUMO

Spider silk has outstanding mechanical properties, rivaling some of the best materials on the planet. Biochemical analyses of tubuliform silk have led to the identification of TuSp1, egg case protein 1, and egg case protein 2. TuSp1 belongs to the spidroin superfamily, containing a non-repetitive N- and C-terminal domain and internal block repeats. ECP1 and ECP2, which lack internal block repeats and sequence similarities to the highly conserved N- and C-terminal domains of spidroins, have cysteine-rich N-terminal domains. In this study, we performed an in-depth proteomic analysis of tubuliform glands, spinning dope, and egg sacs, which led to the identification of a novel molecular constituent of black widow tubuliform silk, referred to as egg case protein 3 or ECP3. Analysis of the translated ECP3 cDNA predicts a low molecular weight protein of 11.8 kDa. Real-time reverse transcription-quantitative PCR analysis performed with different silk-producing glands revealed ECP3 mRNA is predominantly expressed within tubuliform glands of spiders. Taken together, these findings reveal a novel protein that is secreted into black widow spider tubuliform silk.


Assuntos
Viúva Negra/química , Proteínas do Ovo/química , Fibroínas/química , Sequência de Aminoácidos , Estruturas Animais/metabolismo , Animais , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo , Feminino , Regulação da Expressão Gênica , Óvulo/metabolismo , Óvulo/ultraestrutura , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espectrometria de Massas em Tandem
4.
Molecules ; 25(14)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674428

RESUMO

Spider dragline silk represents a biomaterial with outstanding mechanical properties, possessing high-tensile strength and toughness. In black widows at least eight different proteins have been identified as constituents of dragline silk. These represent major ampullate spidroins MaSp1, MaSp2, MaSp', and several low-molecular weight cysteine-rich protein (CRP) family members, including CRP1, CRP2, and CRP4. Molecular modeling predicts that CRPs contain a cystine slipknot motif, but experimental evidence to support this assertion remains to be reported. To advance scientific knowledge regarding CRP function, we recombinantly expressed and purified CRP1 and CRP4 from bacteria and investigated their secondary structure using circular dichroism (CD) under different chemical and physical conditions. We demonstrate by far-UV CD spectroscopy that these proteins contain similar secondary structure, having substantial amounts of random coil conformation, followed by lower levels of beta sheet, alpha helical and beta turn structures. CRPs are thermally and pH stable; however, treatment with reagents that disrupt disulfide bonds impact their structural conformations. Cross-linking mass spectrometry (XL-MS) data also support computational models of CRP1. Taken together, the chemical and thermal stability of CRPs, the cross-linking data, coupled with the structural sensitivity to reducing agents, are experimentally consistent with the supposition CRPs are cystine slipknot proteins.


Assuntos
Viúva Negra/química , Proteínas de Insetos/química , Modelos Moleculares , Conformação Proteica , Seda/química , Sequência de Aminoácidos , Animais , Concentração de Íons de Hidrogênio , Proteínas de Insetos/isolamento & purificação , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes , Espectrometria de Massas em Tandem
5.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31585990

RESUMO

The methylotrophic yeast Pichia pastoris has been utilized for heterologous protein expression for over 30 years. Because P. pastoris secretes few of its own proteins, the exported recombinant protein is the major polypeptide in the extracellular medium, making purification relatively easy. Unfortunately, some recombinant proteins intended for secretion are retained within the cell. A mutant strain isolated in our laboratory, containing a disruption of the BGS13 gene, displayed elevated levels of secretion for a variety of reporter proteins. The Bgs13 peptide (Bgs13p) is similar to the Saccharomyces cerevisiae protein kinase C 1 protein (Pkc1p), but its specific mode of action is currently unclear. To illuminate differences in the secretion mechanism between the wild-type (wt) strain and the bgs13 strain, we determined that the disrupted bgs13 gene expressed a truncated protein that had reduced protein kinase C activity and a different location in the cell, compared to the wt protein. Because the Pkc1p of baker's yeast plays a significant role in cell wall integrity, we investigated the sensitivity of the mutant strain's cell wall to growth antagonists and extraction by dithiothreitol, determining that the bgs13 strain cell wall suffered from inherent structural problems although its porosity was normal. A proteomic investigation of the bgs13 strain secretome and cell wall-extracted peptides demonstrated that, compared to its wt parent, the bgs13 strain also displayed increased release of an array of normally secreted, endogenous proteins, as well as endoplasmic reticulum-resident chaperone proteins, suggesting that Bgs13p helps regulate the unfolded protein response and protein sorting on a global scale.IMPORTANCE The yeast Pichia pastoris is used as a host system for the expression of recombinant proteins. Many of these products, including antibodies, vaccine antigens, and therapeutic proteins such as insulin, are currently on the market or in late stages of development. However, one major weakness is that sometimes these proteins are not secreted from the yeast cell efficiently, which impedes and raises the cost of purification of these vital proteins. Our laboratory has isolated a mutant strain of Pichia pastoris that shows enhanced secretion of many proteins. The mutant produces a modified version of Bgs13p. Our goal is to understand how the change in the Bgs13p function leads to improved secretion. Once the Bgs13p mechanism is illuminated, we should be able to apply this understanding to engineer new P. pastoris strains that efficiently produce and secrete life-saving recombinant proteins, providing medical and economic benefits.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pichia/genética , Pichia/metabolismo , Sistemas de Translocação de Proteínas/genética , Sistemas de Translocação de Proteínas/metabolismo , Sequência de Aminoácidos , Sistemas de Secreção Bacterianos , Parede Celular/química , Clonagem Molecular , Retículo Endoplasmático/metabolismo , Regulação Fúngica da Expressão Gênica , Chaperonas Moleculares/metabolismo , Proteína Quinase C/metabolismo , Proteômica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Int J Mol Sci ; 17(9)2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27649139

RESUMO

The outstanding material properties of spider dragline silk fibers have been attributed to two spidroins, major ampullate spidroins 1 and 2 (MaSp1 and MaSp2). Although dragline silk fibers have been treated with different chemical solvents to elucidate the relationship between protein structure and fiber mechanics, there has not been a comprehensive proteomic analysis of the major ampullate (MA) gland, its spinning dope, and dragline silk using a wide range of chaotropic agents, inorganic salts, and fluorinated alcohols to elucidate their complete molecular constituents. In these studies, we perform in-solution tryptic digestions of solubilized MA glands, spinning dope and dragline silk fibers using five different solvents, followed by nano liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis with an Orbitrap Fusion™ Tribrid™. To improve protein identification, we employed three different tryptic peptide fragmentation modes, which included collision-induced dissociation (CID), electron transfer dissociation (ETD), and high energy collision dissociation (HCD) to discover proteins involved in the silk assembly pathway and silk fiber. In addition to MaSp1 and MaSp2, we confirmed the presence of a third spidroin, aciniform spidroin 1 (AcSp1), widely recognized as the major constituent of wrapping silk, as a product of dragline silk. Our findings also reveal that MA glands, spinning dope, and dragline silk contain at least seven common proteins: three members of the Cysteine-Rich Protein Family (CRP1, CRP2 and CRP4), cysteine-rich secretory protein 3 (CRISP3), fasciclin and two uncharacterized proteins. In summary, this study provides a proteomic blueprint to construct synthetic silk fibers that most closely mimic natural fibers.


Assuntos
Viúva Negra/metabolismo , Fibroínas/isolamento & purificação , Proteômica/métodos , Seda/metabolismo , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/isolamento & purificação , Viúva Negra/química , Cromatografia Líquida , Fibroínas/química , Proteoma/efeitos dos fármacos , Solventes/farmacologia , Espectrometria de Massas em Tandem
7.
Biomacromolecules ; 15(11): 4073-81, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25259849

RESUMO

Dragline silk has been proposed to contain two main protein constituents, MaSp1 and MaSp2. However, the mechanical properties of synthetic spider silks spun from recombinant MaSp1 and MaSp2 proteins have yet to approach natural fibers, implying the natural spinning dope is missing critical factors. Here we report the discovery of novel molecular constituents within the spinning dope that are extruded into dragline silk. Protein studies of the liquid spinning dope from the major ampullate gland, coupled with the analysis of dragline silk fibers using mass spectrometry, demonstrate the presence of a new family of low-molecular-weight cysteine-rich proteins (CRPs) that colocalize with the MA fibroins. Expression of the CRP family members is linked to dragline silk production, specifically MaSp1 and MaSp2 mRNA synthesis. Biochemical data support that CRP molecules are secreted into the spinning dope and assembled into macromolecular complexes via disulfide bond linkages. Sequence analysis supports that CRP molecules share similarities to members that belong to the cystine slipknot superfamily, suggesting that these factors may have evolved to increase fiber toughness by serving as molecular hubs that dissipate large amounts of energy under stress. Collectively, our findings provide molecular details about the components of dragline silk, providing new insight that will advance materials development of synthetic spider silk for industrial applications.


Assuntos
Cisteína/síntese química , Fibroínas/síntese química , Seda/síntese química , Sequência de Aminoácidos , Animais , Viúva Negra , Cisteína/análise , Fibroínas/análise , Fibroínas/genética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Seda/análise , Seda/genética
8.
J Biol Chem ; 287(43): 35986-99, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22927444

RESUMO

Adhesive spider glues are required to perform a variety of tasks, including web construction, prey capture, and locomotion. To date, little is known regarding the molecular and structural features of spider glue proteins, in particular bioadhesives that interconnect dragline or scaffolding silks during three-dimensional web construction. Here we use biochemical and structural approaches to identify and characterize two aggregate gland specific gene products, AgSF1 and AgSF2, and demonstrate that these proteins co-localize to the connection joints of both webs and wrapping silks spun from the black widow spider, Latrodectus hesperus. Protein architectures are markedly divergent between AgSF1 and AgSF2, as well as traditional spider silk fibroin family members, suggesting connection joints consist of a complex proteinaceous network. AgSF2 represents a nonglycosylated 40-kDa protein that has novel internal amino acid block repeats with the consensus sequence NVNVN embedded in a glycine-rich matrix. Analysis of the amino acid sequence of AgSF1 reveals pentameric QPGSG iterations that are similar to conserved modular elements within mammalian elastin, a rubber-like elastomeric protein that interfaces with collagen. Wet-spinning methodology using purified recombinant proteins show AgSF1 has the potential to self-assemble into fibers. X-ray fiber diffraction studies performed on these synthetic fibers reveal the presence of noncrystalline domains that resemble classical rubber networks. Collectively, these data support that the aggregate gland serves to extrude a protein mixture that contains substances that allow for the self-assembly of fiber-like structures that interface with dragline silks to mediate prey capture.


Assuntos
Viúva Negra/química , Fibroínas/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Viúva Negra/genética , Fibroínas/genética , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
9.
Biomacromolecules ; 13(2): 304-12, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22176138

RESUMO

Spider silk is renowned for its extraordinary mechanical properties, having a balance of high tensile strength and extensibility. To date, the majority of studies have focused on the production of dragline silks from synthetic spider silk gene products. Here we report the first mechanical analysis of synthetic egg case silk fibers spun from the Latrodectus hesperus tubuliform silk proteins, TuSp1 and ECP-2. We provide evidence that recombinant ECP-2 proteins can be spun into fibers that display mechanical properties similar to other synthetic spider silks. We also demonstrate that silks spun from recombinant thioredoxin-TuSp1 fusion proteins that contain the conserved C-terminal domain exhibit increased extensibility and toughness when compared to the identical fibers spun from fusion proteins lacking the C-terminus. Mechanical analyses reveal that the properties of synthetic tubuliform silks can be modulated by altering the postspin draw ratios of the fibers. Fibers subject to increased draw ratios showed elevated tensile strength and decreased extensibility but maintained constant toughness. Wide-angle X-ray diffraction studies indicate that postdrawn fibers containing the C-terminal domain of TuSp1 have more amorphous content when compared to fibers lacking the C-terminus. Taken together, these studies demonstrate that recombinant tubuliform spidroins that contain the conserved C-terminal domain with embedded protein tags can be effectively spun into fibers, resulting in similar tensile strength but increased extensibility relative to nontagged recombinant dragline silk proteins spun from equivalently sized proteins.


Assuntos
Fibroínas/química , Proteínas Recombinantes de Fusão/química , Seda/biossíntese , Sequência de Aminoácidos , Animais , Clonagem Molecular , Sequência Conservada , DNA Complementar/química , DNA Complementar/genética , Elasticidade , Escherichia coli , Fibroínas/genética , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/ultraestrutura , Homologia de Sequência de Aminoácidos , Seda/ultraestrutura , Aranhas , Resistência à Tração , Difração de Raios X
10.
J Biol Chem ; 284(42): 29097-108, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19666476

RESUMO

Spiders spin high performance threads that have diverse mechanical properties for specific biological applications. To better understand the molecular mechanism by which spiders anchor their threads to a solid support, we solubilized the attachment discs from black widow spiders and performed in-solution tryptic digests followed by MS/MS analysis to identify novel peptides derived from glue silks. Combining matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry and cDNA library screening, we isolated a novel member of the silk gene family called pysp1 and demonstrate that its protein product is assembled into the attachment disc silks. Alignment of the PySp1 amino acid sequence to other fibroins revealed conservation in the non-repetitive C-terminal region of the silk family. MS/MS analysis also confirmed the presence of MaSp1 and MaSp2, two important components of dragline silks, anchored within the attachment disc materials. Characterization of the ultrastructure of attachment discs using scanning electron microscopy studies support the localization of PySp1 to small diameter fibers embedded in a glue-like cement, which network with large diameter dragline silk threads, producing a strong, adhesive material. Consistent with elevated PySp1 mRNA levels detected in the pyriform gland, MS analysis of the luminal contents extracted from the pyriform gland after tryptic digestion support the assertion that PySp1 represents one of the major constituents manufactured in the pyriform gland. Taken together, our data demonstrate that PySp1 is spun into attachment disc silks to help affix dragline fibers to substrates, a critical function during spider web construction for prey capture and locomotion.


Assuntos
Fibroínas/química , Espectrometria de Massas/métodos , Seda/química , Animais , Viúva Negra , Clonagem Molecular , DNA Complementar/metabolismo , Biblioteca Gênica , Microscopia Eletrônica de Varredura/métodos , Peptídeos/química , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Seda/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Aranhas , Tripsina/química
11.
Biomacromolecules ; 11(12): 3495-503, 2010 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-21053953

RESUMO

Spider attachment disc silk fibers are spun into a viscous liquid that rapidly solidifies, gluing dragline silk fibers to substrates for locomotion or web construction. Here we report the identification and artificial spinning of a novel attachment disc glue silk fibroin, Pyriform Spidroin 2 (PySp2), from the golden orb weaver Nephila clavipes . MS studies support PySp2 is a constituent of the pyriform gland that is spun into attachment discs. Analysis of the PySp2 protein architecture reveals sequence divergence relative to the other silk family members, including the cob weaver glue silk fibroin PySp1. PySp2 contains internal block repeats that consist of two subrepeat units: one dominated by Ser, Gln, and Ala and the other Pro-rich. Artificial spinning of recombinant PySp2 truncations shows that the Ser-Gln-Ala-rich subrepeat is sufficient for the assembly of polymeric subunits and subsequent fiber formation. These studies support that both orb- and cob-weaving spiders have evolved highly polar block-repeat sequences with the ability to self-assemble into fibers, suggesting a strategy to allow fiber fabrication in the liquid environment of the attachment discs.


Assuntos
Fibroínas/química , Sequência de Aminoácidos , Animais , Sequências Repetitivas de Ácido Nucleico , Seda , Aranhas , Viscosidade
12.
Chem Biol Drug Des ; 96(5): 1292-1304, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32516846

RESUMO

In this paper, we report the synthesis of a phenanthroline and neomycin conjugate (7). Compound 7 binds to a human telomeric G-quadruplex (G1) with a higher affinity compared with its parent compounds (phenanthroline and neomycin), which is determined by several biophysical studies. Compound 7 shows good selectivity for G-quadruplex (G4) DNA over duplex DNA. The binding of 7 with G1 is predominantly enthalpy-driven, and the binding stoichiometry of 7 with G1 is one for the tight-binding event as determined by ESI mass spectrometry. A plausible binding mode is a synergistic effect of end-stacking and groove interactions, as indicated by docking studies. Compound 7 can inhibit human telomerase activity at low micromolar concentrations, which is more potent than previously reported 5-substituted phenanthroline derivatives.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Quadruplex G , Neomicina/farmacologia , Fenantrolinas/metabolismo , Telomerase/antagonistas & inibidores , Humanos , Ligantes , Simulação de Dinâmica Molecular , Termodinâmica
13.
DNA Cell Biol ; 24(6): 371-80, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15941389

RESUMO

Members of the basic helix-loop-helix (bHLH) family are required for a number of different developmental pathways, including lymphopoiesis, myogenesis, neurogenesis, and sex determination. Screening a cDNA library prepared from silk-producing glands of the black widow spider, we have identified a new bHLH transcription factor named SGSF. Within the bHLH region, SGSF showed considerable conservation with other HLH proteins, including Drosophila melanogaster achaete and scute, as well as three HLH proteins identified by gene prediction programs. The expression pattern of SGSF was restricted to a subset of silk-producing glands, which include the tubuliform and major ampullate glands. SGSF was capable of binding an E-box element as a heterodimer with the E protein, E47, but was unable to bind this motif as a homodimer. SGSF was demonstrated to be a nuclear transcription factor capable of attenuating the transactivation of E47 homodimers in mammalian cells. SGSF represents the first example of a silk gland-restricted bHLH protein, and its expression pattern suggests that SGSF plays a role in regulating differentiation of cells in the spider that control silk gland formation or egg case silk gene expression.


Assuntos
Viúva Negra/genética , Proteínas de Ligação a DNA/genética , Glândulas Exócrinas/metabolismo , Seda , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Viúva Negra/metabolismo , Núcleo Celular/metabolismo , DNA/metabolismo , DNA Complementar/química , DNA Complementar/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Dimerização , Expressão Gênica/genética , Proteínas HMGB/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Transporte Proteico , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Fatores de Transcrição TCF , Proteína 1 Semelhante ao Fator 7 de Transcrição , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Ativação Transcricional , Transfecção
14.
J Vis Exp ; (65): e4191, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22847722

RESUMO

As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks.


Assuntos
Materiais Biomiméticos/síntese química , Seda/síntese química , Aranhas , Animais
15.
J Vis Exp ; (47)2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21248709

RESUMO

Modern spiders spin high-performance silk fibers with a broad range of biological functions, including locomotion, prey capture and protection of developing offspring. Spiders accomplish these tasks by spinning several distinct fiber types that have diverse mechanical properties. Such specialization of fiber types has occurred through the evolution of different silk-producing glands, which function as small biofactories. These biofactories manufacture and store large quantities of silk proteins for fiber production. Through a complex series of biochemical events, these silk proteins are converted from a liquid into a solid material upon extrusion. Mechanical studies have demonstrated that spider silks are stronger than high-tensile steel. Analyses to understand the relationship between the structure and function of spider silk threads have revealed that spider silk consists largely of proteins, or fibroins, that have block repeats within their protein sequences. Common molecular signatures that contribute to the incredible tensile strength and extensibility of spider silks are being unraveled through the analyses of translated silk cDNAs. Given the extraordinary material properties of spider silks, research labs across the globe are racing to understand and mimic the spinning process to produce synthetic silk fibers for commercial, military and industrial applications. One of the main challenges to spinning artificial spider silk in the research lab involves a complete understanding of the biochemical processes that occur during extrusion of the fibers from the silk-producing glands. Here we present a method for the isolation of the seven different silk-producing glands from the cobweaving black widow spider, which includes the major and minor ampullate glands [manufactures dragline and scaffolding silk], tubuliform [synthesizes egg case silk], flagelliform [unknown function in cob-weavers], aggregate [makes glue silk], aciniform [synthesizes prey wrapping and egg case threads] and pyriform [produces attachment disc silk]. This approach is based upon anesthetizing the spider with carbon dioxide gas, subsequent separation of the cephalothorax from the abdomen, and microdissection of the abdomen to obtain the silk-producing glands. Following the separation of the different silk-producing glands, these tissues can be used to retrieve different macromolecules for distinct biochemical analyses, including quantitative real-time PCR, northern- and western blotting, mass spectrometry (MS or MS/MS) analyses to identify new silk protein sequences, search for proteins that participate in the silk assembly pathway, or use the intact tissue for cell culture or histological experiments.


Assuntos
Viúva Negra/anatomia & histologia , Microdissecção/métodos , Seda/biossíntese , Animais , Viúva Negra/metabolismo
16.
Biochemistry ; 47(16): 4692-700, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18376847

RESUMO

Spiders spin high performance fibers with diverse biological functions and mechanical properties. Molecular and biochemical studies of spider prey wrapping silks have revealed the presence of the aciniform silk fibroin AcSp1-like. In our studies we demonstrate the presence of a second distinct polypeptide present within prey wrapping silk. Combining matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry and reverse genetics, we have isolated a novel gene called MiSp1-like and demonstrate that its protein product is a constituent of prey wrap silks from the black widow spider, Latrodectus hesperus. BLAST searches of the NCBInr protein database using the amino acid sequence of MiSp1-like revealed similarity to the conserved C-terminal domain of silk family members. In particular, MiSp1-like showed the highest degree of sequence similarity to the nonrepetitive C-termini of published orb-weaver minor ampullate fibroin molecules. Analysis of the internal amino acid sequence of the black widow MiSp1-like revealed polyalanine stretches interrupted by glycine residues and glycine-alanine couplets within MiSp1-like as well as repeats of the heptameric sequence AGGYGQG. Real-time quantitative PCR analysis demonstrates that the MiSp1-like gene displays a minor ampullate gland-restricted pattern of expression. Furthermore, amino acid composition analysis, coupled with scanning electron microscopy of raw wrapping silk, supports the assertion that minor ampullate silks are important constituents of black widow spider prey wrap silk. Collectively, our findings provide direct molecular evidence for the involvement of minor ampullate fibroins in swathing silks and suggest composite materials play an important role in the wrap attack process for cob-weavers.


Assuntos
Seda/química , Seda/metabolismo , Aranhas/química , Aranhas/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , DNA Complementar/genética , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , RNA Mensageiro/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Seda/genética , Seda/ultraestrutura , Solubilidade , Aranhas/genética , Aranhas/ultraestrutura , Tripsina/metabolismo
17.
Biochemistry ; 46(11): 3294-303, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17311422

RESUMO

Elucidation of the molecular composition and physical properties of spider glue is necessary to understand its function in the mechanics of the web and prey capture. Previous reports have indicated that components of the adhesive coating contain inorganic molecules, phosphorylated glycoproteins, lipids, and organic low-molecular mass (LMM) compounds. Using a proteomic strategy, we have investigated the viscid, aqueous components that coat different silk fiber types from the black widow spider, Latrodectus hesperus. After in-solution tryptic digestion of the aqueous protein material extracted from egg case sacs, gumfooted lines, and the web scaffolding connection joints, followed by peptide analysis using MALDI tandem TOF mass spectrometry, we demonstrate that these fibers are coated with common peptides. Utilizing a reverse genetics approach, we have isolated the cDNAs encoding two distinct fiber coating products, which we have named spider coating peptide 1 and 2 (SCP-1 and SCP-2). Secreted forms of SCP-1 and SCP-2 contain 36 and 19 amino acids, respectively, and their primary sequences display no significant similarities to ensemble repeat units from traditional fibroins. Quantitative real-time reverse transcription PCR analyses show that these mRNAs are chiefly produced by the aggregate gland. Biochemical studies also demonstrate that the SCP-1 peptide has intrinsic metal binding properties, suggesting a role of peptide-metal ion interactions with the fiber constituents to enhance thread performance. Collectively, these investigations are the first to reveal a novel role for the aggregate gland in the production of peptides that coat spider silk threads.


Assuntos
Adesivos/química , Proteínas de Insetos/química , Seda/química , Sequência de Aminoácidos , Animais , Viúva Negra/genética , Fibroínas , Dados de Sequência Molecular , Óvulo/química , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
J Biol Chem ; 282(48): 35088-97, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17921147

RESUMO

Spiders produce high performance fibers with diverse mechanical properties and biological functions. Molecular and biochemical studies of spider egg case silk have revealed that the main constituent of the large diameter fiber contains the fibroin TuSp1. Here we demonstrate by SDS-PAGE and protein silver staining the presence of a distinct approximately 300-kDa polypeptide that is found in solubilized egg case sacs. Combining matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry and reverse genetics, we have isolated a novel gene called AcSp1-like and demonstrate that its protein product is assembled into the small diameter fibers of egg case sacs and wrapping silks from the black widow spider, Latrodectus hesperus. BLAST searches of the NCBInr protein data base using the amino acid sequence of AcSp1-like revealed similarity to AcSp1, an inferred protein proposed to be a component of wrapping silk. However, the AcSp1-like protein was found to display more nonuniformity in its internal iterated repeat modules than the putative AcSp1 fibroin. Real time quantitative PCR analysis demonstrates that the AcSp1-like gene displays an aciniform gland-restricted pattern of expression. The amino acid composition of the fibroins extracted from the luminal contents of the aciniform glands was remarkably similar to the predicted amino acid composition of the AcSp1-like protein, which supports the assertion that AcSp1-like protein represents the major constituent stored within the aciniform gland. Collectively, our findings provide the first direct molecular evidence for the involvement of the aciniform gland in the production of a common fibroin that is assembled into the small diameter threads of egg case and wrapping silk of cob weavers.


Assuntos
Fibroínas/química , Sequência de Aminoácidos , Animais , Viúva Negra , Clonagem Molecular , Biologia Computacional , Fibroínas/metabolismo , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Óvulo/metabolismo , Peptídeos/química , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Seda , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tripsina/química
19.
Biochemistry ; 45(11): 3506-16, 2006 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-16533031

RESUMO

Spider silk proteins are well-known for their extraordinary mechanical properties, displaying remarkable strength and toughness. In this study, matrix-assisted laser desorption ionization (MALDI) tandem time-of-flight (TOF) mass spectrometry (MS/MS) and reverse genetics were used to isolate a new cDNA sequence that encodes for a protein assembled into egg case silk from the black widow spider, Latrodectus hesperus. Analysis of the primary sequence of this protein reveals approximately 52% identity to the egg case protein 1 (ECP-1) fibroin-like family member. On the basis of the similarity in the primary sequence and expression pattern, we have named this factor egg case protein 2 (ECP-2). Alignments of ECP-1 and ECP-2 demonstrate highly conserved N termini, with 16 Cys residues found within the first 153 amino acids. Traditional ensemble repeats found within reported fibroins were poorly represented in the primary sequence of ECP-2, but scattered blocks of polyalanine were present, along with a C terminus rich in GA repeats. Reverse transcription quantitative PCR analysis showed that ECP-2 is predominantly expressed in the tubuliform gland. Relative to ECP-1, ECP-2 mRNA levels were determined to be >2-fold higher. MALDI MS/MS analysis of peptide fragments generated from the large-diameter core fiber after enzymatic digestion and acid hydrolysis demonstrated the presence of a fiber that is trimeric in nature, containing tubuliform spidroin 1 (TuSp1), ECP-1, and ECP-2. We also report an additional primary sequence for TuSp1, demonstrating that TuSp1 contains two Cys residues within a nonrepetitive N-terminal region. In combination with the distinctive protein architectures of ECP-1 and ECP-2, along with their co-localization with TuSp1 in the core fiber, our findings suggest that ECP-1 and ECP-2 play important structural roles in the egg case silk fiber.


Assuntos
Viúva Negra/metabolismo , Proteínas de Insetos/química , Óvulo/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Viúva Negra/química , Viúva Negra/embriologia , Clonagem Molecular , Cisteína/metabolismo , DNA Complementar/química , Fibroínas/química , Fibroínas/metabolismo , Biblioteca Gênica , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
J Biol Chem ; 280(22): 21220-30, 2005 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-15797873

RESUMO

Spiders produce multiple types of silk that exhibit diverse mechanical properties and biological functions. Most molecular studies of spider silk have focused on fibroins from dragline silk and capture silk, two important silk types involved in the survival of the spider. In our studies we have focused on the characterization of egg case silk, a third silk fiber produced by the black widow spider, Latrodectus hesperus. Analysis of the physical structure of egg case silk using scanning electron microscopy demonstrates the presence of small and large diameter fibers. By using the strong protein denaturant 8 M guanidine hydrochloride to solubilize the fibers, we demonstrated by SDS-PAGE and protein silver staining that an abundant component of egg case silk is a 100-kDa protein doublet. Combining matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry and reverse genetics, we have isolated a novel gene called ecp-1, which encodes for one of the protein components of the 100-kDa species. BLAST searches of the NCBInr protein data base using the primary sequence of ECP-1 revealed similarity to fibroins from spiders and silkworms, which mapped to two distinct regions within the ECP-1. These regions contained the conserved repetitive fibroin motifs poly(Ala) and poly(Gly-Ala), but surprisingly, no larger ensemble repeats could be identified within the primary sequence of ECP-1. Consistent with silk gland-restricted patterns of expression for fibroins, ECP-1 was demonstrated to be predominantly produced in the tubuliform gland, with lower levels detected in the major and minor ampullate glands. ECP-1 monomeric units were also shown to assemble into higher aggregate structures through the formation of disulfide bonds via a unique cysteine-rich N-terminal region. Collectively, our findings provide new insight into the components of egg case silk and identify a new class of silk proteins with distinctive molecular features relative to traditional members of the spider silk gene family.


Assuntos
Fibroínas/química , Fibroínas/classificação , Seda/química , Alanina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Viúva Negra , Clonagem Molecular , Códon , DNA Complementar/metabolismo , Bases de Dados como Assunto , Dissulfetos/química , Eletroforese em Gel de Poliacrilamida , Biblioteca Gênica , Técnicas Genéticas , Guanidina/farmacologia , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Fases de Leitura Aberta , Peptídeos/química , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Isoformas de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Coloração pela Prata , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Aranhas , Tripsina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA