Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 623(7988): 828-835, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968399

RESUMO

The skin epidermis is constantly renewed throughout life1,2. Disruption of the balance between renewal and differentiation can lead to uncontrolled growth and tumour initiation3. However, the ways in which oncogenic mutations affect the balance between renewal and differentiation and lead to clonal expansion, cell competition, tissue colonization and tumour development are unknown. Here, through multidisciplinary approaches that combine in vivo clonal analysis using intravital microscopy, single-cell analysis and functional analysis, we show how SmoM2-a constitutively active oncogenic mutant version of Smoothened (SMO) that induces the development of basal cell carcinoma-affects clonal competition and tumour initiation in real time. We found that expressing SmoM2 in the ear epidermis of mice induced clonal expansion together with tumour initiation and invasion. By contrast, expressing SmoM2 in the back-skin epidermis led to a clonal expansion that induced lateral cell competition without dermal invasion and tumour formation. Single-cell analysis showed that oncogene expression was associated with a cellular reprogramming of adult interfollicular cells into an embryonic hair follicle progenitor (EHFP) state in the ear but not in the back skin. Comparisons between the ear and the back skin revealed that the dermis has a very different composition in these two skin types, with increased stiffness and a denser collagen I network in the back skin. Decreasing the expression of collagen I in the back skin through treatment with collagenase, chronic UV exposure or natural ageing overcame the natural resistance of back-skin basal cells to undergoing EHFP reprogramming and tumour initiation after SmoM2 expression. Altogether, our study shows that the composition of the extracellular matrix regulates how susceptible different regions of the body are to tumour initiation and invasion.


Assuntos
Transformação Celular Neoplásica , Matriz Extracelular , Neoplasias Cutâneas , Microambiente Tumoral , Animais , Camundongos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Colágeno/metabolismo , Epiderme/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Neoplasias Cutâneas/patologia , Carcinoma Basocelular/patologia , Orelha/patologia , Colagenases/metabolismo , Envelhecimento , Raios Ultravioleta , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
2.
Nature ; 545(7654): 350-354, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28445456

RESUMO

Netrin-1 is an evolutionarily conserved, secreted extracellular matrix protein involved in axon guidance at the central nervous system midline. Netrin-1 is expressed by cells localized at the central nervous system midline, such as those of the floor plate in vertebrate embryos. Growth cone turning assays and three-dimensional gel diffusion assays have shown that netrin-1 can attract commissural axons. Loss-of-function experiments further demonstrated that commissural axon extension to the midline is severely impaired in the absence of netrin-1 (refs 3, 7, 8, 9). Together, these data have long supported a model in which commissural axons are attracted by a netrin-1 gradient diffusing from the midline. Here we selectively ablate netrin-1 expression in floor-plate cells using a Ntn1 conditional knockout mouse line. We find that hindbrain and spinal cord commissural axons develop normally in the absence of floor-plate-derived netrin-1. Furthermore, we show that netrin-1 is highly expressed by cells in the ventricular zone, which can release netrin-1 at the pial surface where it binds to commissural axons. Notably, Ntn1 deletion from the ventricular zone phenocopies commissural axon guidance defects previously described in Ntn1-knockout mice. These results show that the classical view that attraction of commissural axons is mediated by a gradient of floor-plate-derived netrin-1 is inaccurate and that netrin-1 primarily acts locally by promoting growth cone adhesion.


Assuntos
Orientação de Axônios , Cones de Crescimento/metabolismo , Fatores de Crescimento Neural/metabolismo , Medula Espinal/citologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Adesão Celular , Feminino , Masculino , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural/deficiência , Netrina-1 , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Proteínas Supressoras de Tumor/deficiência
3.
Haematologica ; 101(10): 1228-1236, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27390356

RESUMO

The PML/RARA fusion protein occurs as a result of the t(15;17) translocation in the acute promyelocytic leukemia subtype of human acute myeloid leukemia. Gain of chromosome 8 is the most common chromosomal gain in human acute myeloid leukemia, including acute promyelocytic leukemia. We previously demonstrated that gain of chromosome 8-containing MYC is of central importance in trisomy 8, but the role of the nearby TRIB1 gene has not been experimentally addressed in this context. We have now tested the hypothesis that both MYC and TRIB1 have functional roles underlying leukemogenesis of trisomy 8 by using retroviral vectors to express MYC and TRIB1 in wild-type bone marrow and in marrow that expressed a PML/RARA transgene. Interestingly, although MYC and TRIB1 readily co-operated in leukemogenesis for wild-type bone marrow, TRIB1 provided no selective advantage to cells expressing PML/RARA. We hypothesized that this lack of co-operation between PML/RARA and TRIB1 reflected a common pathway for their effect: both proteins targeting the myeloid transcription factor C/EBPα. In support of this idea, TRIB1 expression abrogated the all-trans retinoic acid response of acute promyelocytic leukemia cells in vitro and in vivo Our data delineate the common and redundant inhibitory effects of TRIB1 and PML/RARA on C/EBPα providing a potential explanation for the lack of selection of TRIB1 in human acute promyelocytic leukemia, and highlighting the key role of C/EBPs in acute promyelocytic leukemia pathogenesis and therapeutic response. In addition, the co-operativity we observed between MYC and TRIB1 in the absence of PML/RARA show that, outside of acute promyelocytic leukemia, gain of both genes may drive selection for trisomy 8.


Assuntos
Leucemia Mieloide Aguda/patologia , Leucemia Promielocítica Aguda/patologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Cromossomos Humanos Par 8 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Leucemia Mieloide Aguda/etiologia , Leucemia Promielocítica Aguda/etiologia , Camundongos , Proteínas de Fusão Oncogênica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Trissomia
4.
Cell Death Differ ; 30(10): 2201-2212, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633969

RESUMO

Drug resistance and cancer relapse represent significant therapeutic challenges after chemotherapy or immunotherapy, and a major limiting factor for long-term cancer survival. Netrin-1 was initially identified as a neuronal navigation cue but has more recently emerged as an interesting target for cancer therapy, which is currently clinically investigated. We show here that netrin-1 is an independent prognostic marker for clinical progression of breast and ovary cancers. Cancer stem cells (CSCs)/Tumor initiating cells (TICs) are hypothesized to be involved in clinical progression, tumor relapse and resistance. We found a significant correlation between netrin-1 expression and cancer stem cell (CSC) markers levels. We also show in different mice models of resistance to chemotherapies that netrin-1 interference using a therapeutic netrin-1 blocking antibody alleviates resistance to chemotherapy and triggers an efficient delay in tumor relapse and this effect is associated with CSCs loss. We also demonstrate that netrin-1 interference limits tumor resistance to immune checkpoint inhibitor and provide evidence linking this enhanced anti-tumor efficacy to a decreased recruitment of a subtype of myeloid-derived suppressor cells (MDSCs) called polymorphonuclear (PMN)-MDSCs. We have functionally demonstrated that these immune cells promote CSCs features and, consequently, resistance to anti-cancer treatments. Together, these data support the view of both a direct and indirect contribution of netrin-1 to cancer stemness and we propose that this may lead to therapeutic opportunities by combining conventional chemotherapies and immunotherapies with netrin-1 interfering drugs.

5.
EMBO Mol Med ; 13(4): e12878, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33719214

RESUMO

The navigation cue netrin-1 is well-documented for its key role in cancer development and represents a promising therapeutic target currently under clinical investigation. Phase 1 and 2 clinical trials are ongoing with NP137, a humanized monoclonal antibody against netrin-1. Interestingly, the epitope recognized by NP137 in netrin-1 shares 90% homology with its counterpart in netrin-3, the closest member to netrin-1 in humans, for which little is known in the field of cancer. Here, we unveiled that netrin-3 appears to be expressed specifically in human neuroblastoma (NB) and small cell lung cancer (SCLC), two subtypes of neuroectodermal/neuroendocrine lineages. Netrin-3 and netrin-1 expression are mutually exclusive, and the former is driven by the MYCN oncogene in NB, and the ASCL-1 or NeuroD1 transcription factors in SCLC. Netrin-3 expression is correlated with disease stage, aggressiveness, and overall survival in NB. Mechanistically, we confirmed the high affinity of netrin-3 for netrin-1 receptors and we demonstrated that netrin-3 genetic silencing or interference using NP137, delayed tumor engraftment, and reduced tumor growth in animal models. Altogether, these data support the targeting of netrin-3 in NB and SCLC.


Assuntos
Neoplasias Pulmonares , Neuroblastoma , Carcinoma de Pequenas Células do Pulmão , Animais , Humanos , Netrina-1 , Netrinas
6.
Dev Cell ; 54(5): 567-569, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32931747

RESUMO

In this issue of Developmental Cell, Li et al. develop a novel lineage tracing system to record EMT activity during lung metastasis of mammary tumors. Using EMT-tracer mouse models, they reveal that N-cadherin is transiently expressed by most metastasis-initiating cells and demonstrate its functional importance during the metastatic cascade.


Assuntos
Neoplasias Pulmonares , Neoplasias Mamárias Animais , Animais , Caderinas/genética , Diferenciação Celular , Transição Epitelial-Mesenquimal , Camundongos
7.
Nat Cell Biol ; 22(4): 389-400, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32231305

RESUMO

In mouse embryonic stem cells (mESCs), chemical blockade of Gsk3α/ß and Mek1/2 (2i) instructs a self-renewing ground state whose endogenous inducers are unknown. Here we show that the axon guidance cue Netrin-1 promotes naive pluripotency by triggering profound signalling, transcriptomic and epigenetic changes in mESCs. Furthermore, we demonstrate that Netrin-1 can substitute for blockade of Gsk3α/ß and Mek1/2 to sustain self-renewal of mESCs in combination with leukaemia inhibitory factor and regulates the formation of the mouse pluripotent blastocyst. Mechanistically, we reveal how Netrin-1 and the balance of its receptors Neo1 and Unc5B co-regulate Wnt and MAPK pathways in both mouse and human ESCs. Netrin-1 induces Fak kinase to inactivate Gsk3α/ß and stabilize ß-catenin while increasing the phosphatase activity of a Ppp2r2c-containing Pp2a complex to reduce Erk1/2 activity. Collectively, this work identifies Netrin-1 as a regulator of pluripotency and reveals that it mediates different effects in mESCs depending on its receptor dosage, opening perspectives for balancing self-renewal and lineage commitment.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Receptores de Netrina/genética , Netrina-1/genética , Receptores de Superfície Celular/genética , Via de Sinalização Wnt/genética , Animais , Linhagem Celular , Embrião de Mamíferos , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos SCID , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Netrina/metabolismo , Netrina-1/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Receptores de Superfície Celular/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA