Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; : e2350773, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804118

RESUMO

In the last decade, there has been a surge in developing immunotherapies to enhance the immune system's ability to eliminate tumor cells. Bispecific antibodies known as T cell engagers (TCEs) present an attractive strategy in this pursuit. TCEs aim to guide cytotoxic T cells toward tumor cells, thereby inducing a strong activation and subsequent tumor cell lysis. In this study, we investigated the activity of different TCEs on both conventional alpha-beta (αß) T cells and unconventional gamma delta (γδ) T cells. TCEs were built using camelid single-domain antibodies (VHHs) targeting the tumor-associated antigen CEACAM5 (CEA), together with T cell receptor chains or a CD3 domain. We show that Vγ9Vδ2 T cells display stronger in vitro antitumor activity than αß T cells when stimulated with a CD3xCEA TCE. Furthermore, restricting the activation of fresh human peripheral T cells to Vγ9Vδ2 T cells limited the production of protumor factors and proinflammatory cytokines, commonly associated with toxicity in patients. Taken together, our findings provide further insights that γδ T cell-specific TCEs hold promise as specific, effective, and potentially safe molecules to improve antitumor immunotherapies.

2.
Plant Physiol ; 193(1): 271-290, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37177985

RESUMO

Viral RNAs can be uridylated in eukaryotic hosts. However, our knowledge of uridylation patterns and roles remains rudimentary for phytoviruses. Here, we report global 3' terminal RNA uridylation profiles for representatives of the main families of positive single-stranded RNA phytoviruses. We detected uridylation in all 47 viral RNAs investigated here, revealing its prevalence. Yet, uridylation levels of viral RNAs varied from 0.2% to 90%. Unexpectedly, most poly(A) tails of grapevine fanleaf virus (GFLV) RNAs, including encapsidated tails, were strictly monouridylated, which corresponds to an unidentified type of viral genomic RNA extremity. This monouridylation appears beneficial for GFLV because it became dominant when plants were infected with nonuridylated GFLV transcripts. We found that GFLV RNA monouridylation is independent of the known terminal uridylyltransferases (TUTases) HEN1 SUPPRESSOR 1 (HESO1) and UTP:RNA URIDYLYLTRANSFERASE 1 (URT1) in Arabidopsis (Arabidopsis thaliana). By contrast, both TUTases can uridylate other viral RNAs like turnip crinkle virus (TCV) and turnip mosaic virus (TuMV) RNAs. Interestingly, TCV and TuMV degradation intermediates were differentially uridylated by HESO1 and URT1. Although the lack of both TUTases did not prevent viral infection, we detected degradation intermediates of TCV RNA at higher levels in an Arabidopsis heso1 urt1 mutant, suggesting that uridylation participates in clearing viral RNA. Collectively, our work unveils an extreme diversity of uridylation patterns across phytoviruses and constitutes a valuable resource to further decipher pro- and antiviral roles of uridylation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Uridina/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , RNA Nucleotidiltransferases/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(20): 10848-10855, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32371486

RESUMO

Grapevine fanleaf virus (GFLV) is a picorna-like plant virus transmitted by nematodes that affects vineyards worldwide. Nanobody (Nb)-mediated resistance against GFLV has been created recently, and shown to be highly effective in plants, including grapevine, but the underlying mechanism is unknown. Here we present the high-resolution cryo electron microscopy structure of the GFLV-Nb23 complex, which provides the basis for molecular recognition by the Nb. The structure reveals a composite binding site bridging over three domains of one capsid protein (CP) monomer. The structure provides a precise mapping of the Nb23 epitope on the GFLV capsid in which the antigen loop is accommodated through an induced-fit mechanism. Moreover, we uncover and characterize several resistance-breaking GFLV isolates with amino acids mapping within this epitope, including C-terminal extensions of the CP, which would sterically interfere with Nb binding. Escape variants with such extended CP fail to be transmitted by nematodes linking Nb-mediated resistance to vector transmission. Together, these data provide insights into the molecular mechanism of Nb23-mediated recognition of GFLV and of virus resistance loss.


Assuntos
Nepovirus/efeitos dos fármacos , Doenças das Plantas/imunologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/farmacologia , Animais , Anticorpos Antivirais/imunologia , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/efeitos dos fármacos , Microscopia Crioeletrônica , Epitopos/química , Modelos Moleculares , Nematoides/virologia , Nepovirus/ultraestrutura , Doenças das Plantas/virologia , Folhas de Planta/virologia , Vírus de Plantas/imunologia , Vírus de Plantas/fisiologia , Conformação Proteica , Vitis
4.
Plant Dis ; 2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34420360

RESUMO

Grapevine enamovirus 1 (GEV-1) is a member of the genus Enamovirus in the family Solemoviridae. GEV-1 was first described in 2017 in a few grapevine cultivars in Brazil (Silva et al. 2017) and subsequently in China (Ren et al. 2021). We first identified GEV-1 using high throughput sequencing (Illumina, NOVASeq SP, TruSeq mRNA stranded 2*150 bp) of ribosomal RNA depleted total RNAs extracts using RNeasy Plant mini kit) (Qiagen) from a Vitis vinifera 'Meunier' leaf sample collected in a more than 20 year old commercial vineyard in the Champagne region of France in 2019. Analyses of the 47,573,330 total reads were performed using CLC Genomics Workbench 12.0 software (Qiagen) as previously described (Hily et al. 2018). The GEV-1 genome, determined only from the HTS data (isolate GEV-1-Fr; GenBank accession No. MW760844), is 6 262 nucleotides (nt) long and fully covered with 5,706 reads (mapping parameters of 0,5 in length and 0,7 in similarity fractions using CLC). Compared with the previously determined sequences (NC_034836 and KX645875) from Brazil, the GEV-1-Fr sequence contain a few indels, including a deletion of 9 nt in the 5' untranslated region (UTR), an insertion of 3 nt located in the overlapping region of the open reading frame (ORF)1 and ORF2, and a single nt insertion in the non-coding region between ORF2 and ORF3. These indels also exist within the sequence of isolate SD-CG from China (MT536978). However, GEV-1-Fr contains a unique 45 nt insertion in the 3'-UTR, although this needs to be verified using standard assays. Overall, GEV-1-Fr exhibits 88.7, 89.1 and 93.3 % identity at the nt level with isolates from Brazil (NC_034836, KX645875) and China (MT536978), respectively. The GEV-1-infected 'Meunier' grapevine showed symptoms of light chlorotic patterns on the leaves that were probably due to the presence of other co-infecting viruses, including Grapevine fanleaf virus, Grapevine Pinot gris virus, Grapevine rupestris stem pitting-associated virus and Grapevine fleck virus. The detection of GEV-1 was further confirmed in the 'Meunier' grapevine via RT-PCR using newly designed primer pairs Fwd_GEV_5600: GCAAGGAGCAGCCCTATAATGCT and Rev_GEV_6075: CTAGTCGATACGATCTATAGGCGAGG that amplified a 474 bp fragment of ORF5. We also designed a TaqManTM assay in OFR5 with the following primers and probe; Fwd_GEV_5662: ACAAGTGCCYGTTTCCATAG, Probe_GEV_5724-FAM: TTTACCGAGGACTATGACGCCGC, Rev_GEV_5772: CACCGGCTCCATAACCATT. Among all the samples from different grapevine cultivars and geographic regions in France that were tested with the TaqMan assay (N=188), only the original 'Meunier' plant from Champagne was positive for GEV-1. To our knowledge, this is the first report of GEV-1 in France and in European vineyards in general. Although many aspects of the virus biology are yet to be elucidated, our results expand its geographical range. New GEV-1 detection primers can be developed, considering its genetic diversity, to facilitate its detection and further define its evolutionary history. Compared to the original sequences (NC_034836 and KX645875) in Brazil a few indels have been identified, including a deletion of 9nt located in the 5' untranslated region (UTR), an insertion of 3nt located in the overlapping region of the open reading frame (ORF)1 and ORF2 and a single nucleotide insertion in the non-coding region between ORF2 and ORF3. All indels were already described in the Chinese sequence (MT536978). However, this new GEV-1-Fr isolate is the only one that displays a 45nt insertion in the 3'-UTR. Overall, GEV-1-Fr exhibits 88.7, 89.1 and 93.3 % identity with isolates from Brazil (NC_034836, KX645875) and China (MT536978), respectively. No specific symptoms were observed in the GEV-1-infected 'Meunier' grapevine other than light chlorotic patterns on the leaves that were probably due to the presence of other virus, as this plant was co-infected with grapevine fanleaf virus (GFLV), grapevine Pinot gris virus (GPGV), grapevine rupestris stem pitting-associated virus (GRSPaV) and grapevine fleck virus (GFkV). The detection of GEV-1 was further confirmed via RT-PCR using newly designed primer pairs located in the 'aphid transmission protein' producing a 474 nt amplicon; Fwd_GEV_5600: GCAAGGAGCAGCCCTATAATGCT; Rev_GEV_6075: CTAGTCGATACGATCTATAGGCGAGG. GEV-1 was detected in all cuttings (N=15) obtained from the original plant. We also designed a tool for a TaqManTM-based detection in the same genome region as mentioned above; Fwd_GEV_5662: ACAAGTGCCYGTTTCCATAG; Probe_GEV_5724-FAM: TTTACCGAGGACTATGACGCCGC; Rev_GEV_5772: CACCGGCTCCATAACCATT. Among all the samples from different grapevine cultivars and geographic regions in France that were tested with the TaqMan assay (N=188), only the original 'Meunier' plant from Champagne was found positive for GEV-1 in gapevine in France.

5.
Mol Plant Microbe Interact ; 32(7): 790-801, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30640575

RESUMO

The mechanisms underlying host plant symptom development upon infection by viruses of the genus Nepovirus in the family Secoviridae, including grapevine fanleaf virus (GFLV), are poorly understood. In the systemic host Nicotiana benthamiana, GFLV strain GHu produces characteristic symptoms of vein clearing in apical leaves, unlike other GFLV strains such as F13, which cause an asymptomatic infection. In this study, we expanded on earlier findings and used reverse genetics to identify residue 802 (lysine, K) of the GFLV-GHu RNA1-encoded RNA-dependent RNA polymerase (1EPol) as a modulator of vein-clearing symptom development in N. benthamiana. Mutations to this site abolished (K to G, A, or Q) or attenuated (K to N or P) symptom expression. Noteworthy, residue 802 is necessary but not sufficient for vein clearing, as GFLV-F13 RNA1 carrying K802 remained asymptomatic in N. benthamiana. No correlation was found between symptom expression and RNA1 accumulation, as shown by reverse transcription-quantitative polymerase chain reaction. Additionally, the involvement of RNA silencing of vein clearing was ruled out by virus-induced gene silencing experiments and structure predictions for protein 1EPol suggested that residue 802 is flanked by strongly predicted stable secondary structures, including a conserved motif of unknown function (805LLKT/AHLK/RT/ALR814). Together, these results reveal the protein nature of the GFLV-GHu symptom determinant in N. benthamiana and provide a solid basis for probing and determining the virus-host proteome network for symptoms of vein clearing.


Assuntos
Nepovirus , Nicotiana , RNA Viral , RNA Polimerase Dependente de RNA , Mutação , Nepovirus/enzimologia , Nepovirus/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Nicotiana/virologia
6.
Plant Biotechnol J ; 16(2): 660-671, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28796912

RESUMO

Since their discovery, single-domain antigen-binding fragments of camelid-derived heavy-chain-only antibodies, also known as nanobodies (Nbs), have proven to be of outstanding interest as therapeutics against human diseases and pathogens including viruses, but their use against phytopathogens remains limited. Many plant viruses including Grapevine fanleaf virus (GFLV), a nematode-transmitted icosahedral virus and causal agent of fanleaf degenerative disease, have worldwide distribution and huge burden on crop yields representing billions of US dollars of losses annually, yet solutions to combat these viruses are often limited or inefficient. Here, we identified a Nb specific to GFLV that confers strong resistance to GFLV upon stable expression in the model plant Nicotiana benthamiana and also in grapevine rootstock, the natural host of the virus. We showed that resistance was effective against a broad range of GFLV isolates independently of the inoculation method including upon nematode transmission but not against its close relative, Arabis mosaic virus. We also demonstrated that virus neutralization occurs at an early step of the virus life cycle, prior to cell-to-cell movement. Our findings will not only be instrumental to confer resistance to GFLV in grapevine, but more generally they pave the way for the generation of novel antiviral strategies in plants based on Nbs.


Assuntos
Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Nepovirus/patogenicidade , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/fisiologia
7.
Plant Biotechnol J ; 16(1): 208-220, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28544449

RESUMO

For some crops, the only possible approach to gain a specific trait requires genome modification. The development of virus-resistant transgenic plants based on the pathogen-derived resistance strategy has been a success story for over three decades. However, potential risks associated with the technology, such as horizontal gene transfer (HGT) of any part of the transgene to an existing gene pool, have been raised. Here, we report no evidence of any undesirable impacts of genetically modified (GM) grapevine rootstock on its biotic environment. Using state of the art metagenomics, we analysed two compartments in depth, the targeted Grapevine fanleaf virus (GFLV) populations and nontargeted root-associated microbiota. Our results reveal no statistically significant differences in the genetic diversity of bacteria that can be linked to the GM trait. In addition, no novel virus or bacteria recombinants of biosafety concern can be associated with transgenic grapevine rootstocks cultivated in commercial vineyard soil under greenhouse conditions for over 6 years.


Assuntos
Metagenômica/métodos , Plantas Geneticamente Modificadas/genética , Vitis/genética , Plantas Geneticamente Modificadas/microbiologia , Plantas Geneticamente Modificadas/virologia , Vitis/microbiologia , Vitis/virologia
8.
Arch Virol ; 163(11): 3105-3111, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30043203

RESUMO

Over the last decade, many scientific disciplines have been impacted by the dawn of new sequencing techniques (HTS: high throughput sequencing). Plant pathology and more specifically virology have been greatly transformed by this 'metagenomics' paradigm shift. Such tools significantly facilitate disease diagnostics with tremendous sensitivity, providing invaluable information such as an exhaustive list of viruses being present in a sample as well as their relative concentration. In addition, many new plant viruses have been discovered. Using RNAseq technology, in silico reconstruction of complete viral genome sequences is easily attainable. This step is of importance for taxonomy, population structure analyses, phylogeography and viral evolution studies. Here, after assembling 81 new near-complete genome sequences of grapevine rupestris stem pitting-associated virus (GRSPaV), we performed a genome-wide diversity study of this ubiquitous virus of grapevine worldwide.


Assuntos
Flexiviridae/isolamento & purificação , Variação Genética , Genoma Viral , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vitis/virologia , Flexiviridae/classificação , Flexiviridae/genética , Filogenia , Vírus de Plantas/classificação , Vírus de Plantas/isolamento & purificação , Análise de Sequência de DNA
9.
Med Sci (Paris) ; 30(10): 855-63, 2014 Oct.
Artigo em Francês | MEDLINE | ID: mdl-25311020

RESUMO

As evidenced by the recent FDA approvals of brentuximab vedotin (Adcetris(®)) and trastuzumab emtansine (Kadcyla(®)), antibody-drug conjugates (ADC) are becoming an important class of biotherapeutics in oncology. In addition, the strong pipeline of ADC in clinical development, bearing 38 ADC for the treatment of both solid and hematological malignancies, emphasizes the interest and confidence of clinicians and pharmaceutical industry in the area. Although the ADC concept looks pretty simple, it took decades before it turned out to be a successful therapeutic solution. Improving the understanding of ADC mechanism of action allowed identifying the most critical factors influencing ADC efficacy and toxicity. This led to still ongoing research efforts in antibody and alternative scaffold engineering, in linker and conjugation chemistry, as well as in the screening and selection of optimal target antigens and cytotoxics.


Assuntos
Anticorpos/uso terapêutico , Antineoplásicos/uso terapêutico , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Ado-Trastuzumab Emtansina , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Brentuximab Vedotin , Descoberta de Drogas , Humanos , Maitansina/análogos & derivados , Maitansina/uso terapêutico , Oncologia/tendências , Trastuzumab
10.
Mol Biol Cell ; 35(3): ar42, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38231876

RESUMO

To reach the lysosome, lysosomal membrane proteins (LMPs) are translocated in the endoplasmic reticulum after synthesis and then transported to the Golgi apparatus. The existence of a direct transport from the Golgi apparatus to the endosomes but also of an indirect route through the plasma membrane has been described. Clathrin adaptor binding motifs contained in the cytosolic tail of LMPs have been described as key players in their intracellular trafficking. Here we used the RUSH assay to synchronize the biosynthetic transport of multiple LMPs. After exiting the Golgi apparatus, RUSH-synchronized LAMP1 was addressed to the cell surface both after overexpression or at endogenous level. Its YXXΦ motif was not involved in the transport from the Golgi apparatus to the plasma membrane but in its endocytosis. LAMP1 and LIMP2 were sorted from each other after reaching the Golgi apparatus. LIMP2 was incorporated in punctate structures for export from the Golgi apparatus from which LAMP1 is excluded. LIMP2-containing post-Golgi transport intermediates did not rely neither on its adaptor binding signal nor on its C-terminal cytoplasmic domain.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Complexo de Golgi , Proteínas de Membrana Lisossomal , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Complexo de Golgi/metabolismo , Membrana Celular/metabolismo , Lisossomos/metabolismo , Clatrina/metabolismo
11.
iScience ; 27(5): 109802, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38746666

RESUMO

Targeted protein degradation (TPD) strategy harnesses the ubiquitin-proteasome system (UPS) to degrade a protein of interest (POI) by bringing it into proximity with an E3 ubiquitin ligase. However, the limited availability of functional E3 ligases and the emergence of resistance through mutations in UPS components restrict this approach. Therefore, identifying alternative E3 ligases suitable for TPD is important to develop new degraders and overcome potential resistance mechanisms. Here, we use a protein-based degrader method, by fusing an anti-tag intracellular antibody to an E3 ligase, to screen E3 ligases enabling the degradation of a tagged POI. We identify SOCS7 E3 ligase as effective biodegrader, able to deplete its target in various cell lines regardless of the POI's subcellular localization. We show its utility by generating a SOCS7-based KRAS degrader that inhibits mutant KRAS pancreatic cancer cells' proliferation. These findings highlight SOCS7 versatility as valuable E3 ligase for generating potent degraders.

12.
J Gen Virol ; 94(Pt 12): 2803-2813, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24088345

RESUMO

Factors involved in symptom expression of viruses from the genus Nepovirus in the family Secoviridae such as grapevine fanleaf virus (GFLV) are poorly characterized. To identify symptom determinants encoded by GFLV, infectious cDNA clones of RNA1 and RNA2 of strain GHu were developed and used alongside existing infectious cDNA clones of strain F13 in a reverse genetics approach. In vitro transcripts of homologous combinations of RNA1 and RNA2 induced systemic infection in Nicotiana benthamiana and Nicotiana clevelandii with identical phenotypes to WT virus strains, i.e. vein clearing and chlorotic spots on N. benthamiana and N. clevelandii for GHu, respectively, and lack of symptoms on both hosts for F13. The use of assorted transcripts mapped symptom determinants on RNA1 of GFLV strain GHu, in particular within the distal 408 nt of the RNA-dependent RNA polymerase (1E(Pol)), as shown by RNA1 transcripts for which coding regions or fragments derived thereof were swapped. Semi-quantitative analyses indicated no significant differences in virus titre between symptomatic and asymptomatic plants infected with various recombinants. Also, unlike the nepovirus tomato ringspot virus, no apparent proteolytic cleavage of GFLV protein 1E(Pol) was detected upon virus infection or transient expression in N. benthamiana. In addition, GFLV protein 1E(Pol) failed to suppress silencing of EGFP in transgenic N. benthamiana expressing EGFP or to enhance GFP expression in patch assays in WT N. benthamiana. Together, our results suggest the existence of strain-specific functional domains, including a symptom determinant module, on the RNA-dependent RNA polymerase of GFLV.


Assuntos
Nepovirus/genética , Nepovirus/patogenicidade , Nicotiana/virologia , Doenças das Plantas/virologia , RNA Polimerase Dependente de RNA/genética , Vitis/virologia , Sequência de Aminoácidos , Dados de Sequência Molecular , Nepovirus/isolamento & purificação , Filogenia , RNA Viral/genética , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
MAbs ; 15(1): 2175311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36797224

RESUMO

Delineating the precise regions on an antigen that are targeted by antibodies has become a key step for the development of antibody therapeutics. X-ray crystallography and cryogenic electron microscopy are considered the gold standard for providing precise information about these binding sites at atomic resolution. However, they are labor-intensive and a successful outcome is not guaranteed. We used deep mutational scanning (DMS) of the human LAMP-1 antigen displayed on yeast surface and leveraged next-generation sequencing to observe the effect of individual mutants on the binding of two LAMP-1 antibodies and to determine their functional epitopes on LAMP-1. Fine-tuned epitope mapping by DMS approaches is augmented by knowledge of experimental antigen structure. As human LAMP-1 structure has not yet been solved, we used the AlphaFold predicted structure of the full-length protein to combine with DMS data and ultimately finely map antibody epitopes. The accuracy of this method was confirmed by comparing the results to the co-crystal structure of one of the two antibodies with a LAMP-1 luminal domain. Finally, we used AlphaFold models of non-human LAMP-1 to understand the lack of mAb cross-reactivity. While both epitopes in the murine form exhibit multiple mutations in comparison to human LAMP-1, only one and two mutations in the Macaca form suffice to hinder the recognition by mAb B and A, respectively. Altogether, this study promotes a new application of AlphaFold to speed up precision mapping of antibody-antigen interactions and consequently accelerate antibody engineering for optimization.


Assuntos
Anticorpos Monoclonais , Antígenos , Animais , Camundongos , Antígenos/metabolismo , Mapeamento de Epitopos/métodos , Epitopos , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Front Immunol ; 14: 1137069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346047

RESUMO

Molecular characterization of antibody immunity and human antibody discovery is mainly carried out using peripheral memory B cells, and occasionally plasmablasts, that express B cell receptors (BCRs) on their cell surface. Despite the importance of plasma cells (PCs) as the dominant source of circulating antibodies in serum, PCs are rarely utilized because they do not express surface BCRs and cannot be analyzed using antigen-based fluorescence-activated cell sorting. Here, we studied the antibodies encoded by the entire mature B cell populations, including PCs, and compared the antibody repertoires of bone marrow and spleen compartments elicited by immunization in a human immunoglobulin transgenic mouse strain. To circumvent prior technical limitations for analysis of plasma cells, we applied single-cell antibody heavy and light chain gene capture from the entire mature B cell repertoires followed by yeast display functional analysis using a cytokine as a model immunogen. We performed affinity-based sorting of antibody yeast display libraries and large-scale next-generation sequencing analyses to follow antibody lineage performance, with experimental validation of 76 monoclonal antibodies against the cytokine antigen that identified three antibodies with exquisite double-digit picomolar binding affinity. We observed that spleen B cell populations generated higher affinity antibodies compared to bone marrow PCs and that antigen-specific splenic B cells had higher average levels of somatic hypermutation. A degree of clonal overlap was also observed between bone marrow and spleen antibody repertoires, indicating common origins of certain clones across lymphoid compartments. These data demonstrate a new capacity to functionally analyze antigen-specific B cell populations of different lymphoid organs, including PCs, for high-affinity antibody discovery and detailed fundamental studies of antibody immunity.


Assuntos
Medula Óssea , Plasmócitos , Camundongos , Animais , Humanos , Camundongos Transgênicos , Baço , Saccharomyces cerevisiae , Anticorpos Monoclonais , Receptores de Antígenos de Linfócitos B/genética , Formação de Anticorpos , Citocinas
15.
Viruses ; 14(10)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298857

RESUMO

Fanleaf degeneration is a complex viral disease of Vitis spp. that detrimentally impacts fruit yield and reduces the productive lifespan of most vineyards worldwide. In France, its main causal agent is grapevine fanleaf virus (GFLV). In the past, field experiments were conducted to explore cross-protection as a management strategy of fanleaf degeneration, but results were unsatisfactory because the mild virus strain negatively impacted fruit yield. In order to select new mild GFLV isolates, we examined two old 'Chardonnay' parcels harbouring vines with distinct phenotypes. Symptoms and agronomic performances were monitored over the four-year study on 21 individual vines that were classified into three categories: asymptomatic GFLV-free vines, GFLV-infected vines severely diseased and GFLV-infected vines displaying mild symptoms. The complete coding genomic sequences of GFLV isolates in infected vines was determined by high-throughput sequencing. Most grapevines were infected with multiple genetically divergent variants. While no specific molecular features were apparent for GFLV isolates from vines displaying mild symptoms, a genetic differentiation of GFLV populations depending on the vineyard parcel was observed. The mild symptomatic grapevines identified during this study were established in a greenhouse to recover GFLV variants of potential interest for cross-protection studies.


Assuntos
Nepovirus , Doenças das Plantas , Fazendas , Filogenia , Nepovirus/genética
16.
J Virol ; 84(16): 7924-33, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20519403

RESUMO

Grapevine fanleaf virus (GFLV) and Arabis mosaic virus (ArMV) from the genus Nepovirus, family Secoviridae, cause a severe degeneration of grapevines. GFLV and ArMV have a bipartite RNA genome and are transmitted specifically by the ectoparasitic nematodes Xiphinema index and Xiphinema diversicaudatum, respectively. The transmission specificity of both viruses maps to their respective RNA2-encoded coat protein (CP). To further delineate the GFLV CP determinants of transmission specificity, three-dimensional (3D) homology structure models of virions and CP subunits were constructed based on the crystal structure of Tobacco ringspot virus, the type member of the genus Nepovirus. The 3D models were examined to predict amino acids that are exposed at the external virion surface, highly conserved among GFLV isolates but divergent between GFLV and ArMV. Five short amino acid stretches that matched these topographical and sequence conservation criteria were selected and substituted in single and multiple combinations by their ArMV counterparts in a GFLV RNA2 cDNA clone. Among the 21 chimeric RNA2 molecules engineered, transcripts of only three of them induced systemic plant infection in the presence of GFLV RNA1. Nematode transmission assays of the three viable recombinant viruses showed that swapping a stretch of (i) 11 residues in the betaB-betaC loop near the icosahedral 3-fold axis abolished transmission by X. index but was insufficient to restore transmission by X. diversicaudatum and (ii) 7 residues in the betaE-alphaB loop did not interfere with transmission by the two Xiphinema species. This study provides new insights into GFLV CP determinants of nematode transmission.


Assuntos
Proteínas do Capsídeo/fisiologia , Vetores de Doenças , Nematoides/virologia , Nepovirus/fisiologia , Doenças das Plantas/virologia , Sequência de Aminoácidos , Aminoácidos/genética , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Modelos Moleculares , Dados de Sequência Molecular , Nepovirus/química , Nepovirus/genética , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Recombinação Genética , Alinhamento de Sequência , Vitis/virologia
17.
Eur J Plant Pathol ; 161(3): 735-742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34465944

RESUMO

Since its identification in 2003, grapevine Pinot gris virus (GPGV, Trichovirus) has now been detected in most grape-growing countries. So far, little is known about the epidemiology of this newly emerging virus. In this work, we used datamining as a tool to monitor in-silico the sanitary status of three vineyards in Italy. All data used in the study were recovered from a work that was already published and for which data were publicly available as SRA (Sequence Read Archive, NCBI) files. While incomplete, knowledge gathered from this work was still important, with evidence of differential accumulation of the virus in grapevine according to year, location, and variety-rootstock association. Additional data regarding GPGV genetic diversity were collected. Some advantages and pitfalls of datamining are discussed.

18.
Viruses ; 13(11)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834945

RESUMO

Virus infection of plants can result in various degrees of detrimental impacts and disparate symptom types and severities. Although great strides have been made in our understanding of the virus-host interactions in herbaceous model plants, the mechanisms underlying symptom development are poorly understood in perennial fruit crops. Grapevine fanleaf virus (GFLV) causes variable symptoms in most vineyards worldwide. To better understand GFLV-grapevine interactions in relation to symptom development, field and greenhouse trials were conducted with a grapevine genotype that exhibits distinct symptoms in response to a severe and a mild strain of GFLV. After validation of the infection status of the experimental vines by high-throughput sequencing, the transcriptomic and metabolomic profiles in plants infected with the two viral strains were tested and compared by RNA-Seq and LC-MS, respectively, in the differentiating grapevine genotype. In vines infected with the severe GFLV strain, 1023 genes, among which some are implicated in the regulation of the hypersensitive-type response, were specifically deregulated, and a higher accumulation of resveratrol and phytohormones was observed. Interestingly, some experimental vines restricted the virus to the rootstock and remained symptomless. Our results suggest that GFLV induces a strain- and cultivar-specific defense reaction similar to a hypersensitive reaction. This type of defense leads to a severe stunting phenotype in some grapevines, whereas others are resistant. This work is the first evidence of a hypersensitive-like reaction in grapevine during virus infection.


Assuntos
Frutas/virologia , Nepovirus , Doenças das Plantas/virologia , Genótipo , Transtornos do Crescimento , Sequenciamento de Nucleotídeos em Larga Escala , Nepovirus/genética , Filogenia , Secoviridae , Nicotiana/virologia , Transcriptoma , Vitis/virologia
19.
Oncoimmunology ; 10(1): 1854529, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33457075

RESUMO

The natural killer group 2 member D (NKG2D) receptor is a C-type lectin-like activating receptor mainly expressed by cytotoxic immune cells including NK, CD8+ T, γδ T and NKT cells and in some pathological conditions by a subset of CD4+ T cells. It binds a variety of ligands (NKG2DL) whose expressions is finely regulated by stress-related conditions. The NKG2DL/NKG2D axis plays a central and complex role in the regulation of immune responses against diverse cellular threats such as oncogene-mediated transformations or infections. We generated a panel of seven highly specific anti-human NKG2D single-domain antibodies targeting various epitopes. These single-domain antibodies were integrated into bivalent and bispecific antibodies using a versatile plug-and-play Fab-like format. Depending on the context, these Fab-like antibodies exhibited activating or inhibitory effects on the immune response mediated by the NKG2DL/NKG2D axis. In solution, the bivalent anti-NKG2D antibodies that compete with NKG2DL potently blocked the activation of NK cells seeded on immobilized MICA, thus constituting antagonizing candidates. Bispecific anti-NKG2DxHER2 antibodies that concomitantly engage HER2 on tumor cells and NKG2D on NK cells elicited cytotoxicity of unstimulated NK in a tumor-specific manner, regardless of their apparent affinities and epitopes. Importantly, the bispecific antibodies that do not compete with ligands binding retained their full cytotoxic activity in the presence of ligands, a valuable property to circumvent immunosuppressive effects induced by soluble ligands in the microenvironment.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Humanos , Imunidade , Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Microambiente Tumoral
20.
Mol Ther ; 16(8): 1474-80, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18560416

RESUMO

Liver tropism potentially leading to massive hepatocyte transduction and hepatotoxicity still represents a major drawback to adenovirus (Ad)-based gene therapy. We previously demonstrated that substitution of the hexon hypervariable region 5 (HVR5), the most abundant capsid protein, constituted a valuable platform for efficient Ad retargeting. The use of different mouse strains revealed that HVR5 substitution also led to dramatically less adenovirus liver transduction and associated toxicity, whereas HVR5-modified Ad were still able to transduce different cell lines efficiently, including primary hepatocytes. We showed that HVR5 modification did not significantly change Ad blood clearance or liver uptake at early times. However, we were able to link the lower liver transduction to enhanced HVR5-modified Ad liver clearance and impaired use of blood factors. Most importantly, HVR5-modified vectors continued to transduce tumors in vivo as efficiently as their wild-type counterparts. Taken together, our data provide a rationale for future design of retargeted vectors with a safer profile.


Assuntos
Adenoviridae/genética , Proteínas do Capsídeo/genética , Fígado/metabolismo , Alanina Transaminase/sangue , Animais , Carcinoma Pulmonar de Lewis/sangue , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Vetores Genéticos/genética , Interleucina-6/sangue , Contagem de Leucócitos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Nus , Contagem de Plaquetas , Reação em Cadeia da Polimerase , Transdução Genética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA