Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(3): 1551-1562, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38197744

RESUMO

Long-term hydrocarbon pollution is a devious threat to aquatic and marine ecosystems. However, microbial responses to chronic pollution remain poorly understood. Combining genome-centric metagenomic and metatranscriptomic analyses of microbial mat samples that experienced chronic hydrocarbon pollution for more than 80 years, we analyzed the transcriptomic activity of alkane and aromatic hydrocarbon degradation pathways at the population level. Consistent with the fluctuating and stratified redox conditions of the habitat, both aerobic and anaerobic hydrocarbon degradation pathways were expressed by taxonomically and metabolically contrasted lineages including members of Bacteroidiales, Desulfobacteraceae, Pseudomonadales; Alcanivoraceae and Halieaceae populations with (photo)-heterotrophic, sulfur- and organohalide-based metabolisms, providing evidence for the co-occurrence and activity of aerobic and anaerobic hydrocarbon degradation pathways in shallow marine microbial mats. In addition, our results suggest that aerobic alkane degradation in long-term pollution involved bacterial families that are naturally widely distributed in marine habitats, but hydrocarbon concentration and composition were found to be a strong structuring factor of their intrafamily diversity and transcriptomic activities.


Assuntos
Bactérias , Ecossistema , Humanos , Bactérias/genética , Bactérias/metabolismo , Hidrocarbonetos , Alcanos , Metagenoma , Biodegradação Ambiental
2.
Appl Microbiol Biotechnol ; 102(6): 2525-2533, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29423635

RESUMO

In offshore production facilities, large amounts of deaerated seawater are continuously injected to maintain pressure in oil reservoirs and equivalent volumes of fluids, composed of an oil/gas, and water mixture are produced. This process, brewing billions of liters of biphasic fluids particularly rich in microorganisms, goes through complex steel pipeline networks that are particularly prone to biofilm formation. Consequently, offshore facilities are frequently victims of severe microbiologically influenced corrosion. Understanding of microbiologically influenced corrosion is constantly growing. In the laboratory, the inventory of potentially corrosive microorganisms is increasing and microbial biochemical and bioelectrical processes are now recognized to be involved in corrosion. However, understanding of corrosive multispecies biofilms and the complex metabolic processes associated with corrosion remains a considerable challenge as simple laboratory biofilms comprising pure or defined mixed cultures poorly represent the complexity of in situ biofilms. Complementary, antagonistic, and parallel microbial pathways occur within the complex microbial and inorganic matrix of the biofilms which can lead to high corrosion rates. This mini-review explores models of microbiologically influenced corrosion and places them in the context of the multispecies biofilms observed in situ. Consequences of mitigation strategies on biofilm corrosiveness and dispersal are also discussed.


Assuntos
Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Corrosão , Aço/química , Redes e Vias Metabólicas , Oxirredução
3.
Appl Environ Microbiol ; 82(8): 2545-2554, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26896143

RESUMO

Offshore oil production facilities are frequently victims of internal piping corrosion, potentially leading to human and environmental risks and significant economic losses. Microbially influenced corrosion (MIC) is believed to be an important factor in this major problem for the petroleum industry. However, knowledge of the microbial communities and metabolic processes leading to corrosion is still limited. Therefore, the microbial communities from three anaerobic biofilms recovered from the inside of a steel pipe exhibiting high corrosion rates, iron oxide deposits, and substantial amounts of sulfur, which are characteristic of MIC, were analyzed in detail. Bacterial and archaeal community structures were investigated by automated ribosomal intergenic spacer analysis, multigenic (16S rRNA and functional genes) high-throughput Illumina MiSeq sequencing, and quantitative PCR analysis. The microbial community analysis indicated that bacteria, particularly Desulfovibrio species, dominated the biofilm microbial communities. However, other bacteria, such as Pelobacter, Pseudomonas, and Geotoga, as well as various methanogenic archaea, previously detected in oil facilities were also detected. The microbial taxa and functional genes identified suggested that the biofilm communities harbored the potential for a number of different but complementary metabolic processes and that MIC in oil facilities likely involves a range of microbial metabolisms such as sulfate, iron, and elemental sulfur reduction. Furthermore, extreme corrosion leading to leakage and exposure of the biofilms to the external environment modify the microbial community structure by promoting the growth of aerobic hydrocarbon-degrading organisms.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biofilmes , Biota , Corrosão , Microbiologia Ambiental , Anaerobiose , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Biológicos , Campos de Petróleo e Gás , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
4.
Appl Environ Microbiol ; 81(10): 3451-9, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25769831

RESUMO

In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic Archaea were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic Methanococcoides burtonii relatives and several new autotrophic Methanogenium lineages, confirming the cooccurrence of Methanosarcinales and Methanomicrobiales methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.


Assuntos
Archaea/isolamento & purificação , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Água do Mar/microbiologia , Archaea/classificação , Archaea/genética , Biodiversidade , California , Dados de Sequência Molecular , Filogenia , Água do Mar/química
5.
Environ Microbiol ; 16(9): 2777-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24238139

RESUMO

SUMMARY: The Sonora Margin cold seeps present on the seafloor a patchiness pattern of white microbial mats surrounded by polychaete and gastropod beds. These surface assemblages are fuelled by abundant organic inputs sedimenting from the water column and upward-flowing seep fluids. Elevated microbial density was observed in the underlying sediments. A previous study on the same samples identified anaerobic oxidation of methane (AOM) as the potential dominant archaeal process in these Sonora Margin sediments, probably catalysed by three clades of archaeal anaerobic methanotrophs (ANME-1, ANME-2 and ANME-3) associated with bacterial syntrophs. In this study, molecular surveys and microscopic observations investigating the diversity of Bacteria involved in AOM process, as well as the environmental parameters affecting the composition and the morphologies of AOM consortia in the Sonora Margin sediments were carried out. Two groups of Bacteria were identified within the AOM consortia, the Desulfosarcina/Desulfococcus SEEP SRB-1a group and a Desulfobulbus-related group. These bacteria showed different niche distributions, association specificities and consortia architectures, depending on sediment surface communities, geochemical parameters and ANME-associated phylogeny. Therefore, the syntrophic AOM process appears to depend on sulphate-reducing bacteria with different ecological niches and/or metabolisms, in a biofilm-like organic matrix.


Assuntos
Ecossistema , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Consórcios Microbianos , Bactérias Redutoras de Enxofre/classificação , DNA Bacteriano/genética , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Bactérias Redutoras de Enxofre/metabolismo
6.
Appl Environ Microbiol ; 80(15): 4626-39, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24837380

RESUMO

Next-generation sequencing (NGS) opens up exciting possibilities for improving our knowledge of environmental microbial diversity, allowing rapid and cost-effective identification of both cultivated and uncultivated microorganisms. However, library preparation, sequencing, and analysis of the results can provide inaccurate representations of the studied community compositions. Therefore, all these steps need to be taken into account carefully. Here we evaluated the effects of DNA extraction methods, targeted 16S rRNA hypervariable regions, and sample origins on the diverse microbes detected by 454 pyrosequencing in marine cold seep and hydrothermal vent sediments. To assign the reads with enough taxonomic precision, we built a database with about 2,500 sequences from Archaea and Bacteria from deep-sea marine sediments, affiliated according to reference publications in the field. Thanks to statistical and diversity analyses as well as inference of operational taxonomic unit (OTU) networks, we show that (i) while DNA extraction methods do not seem to affect the results for some samples, they can lead to dramatic changes for others; and (ii) the choice of amplification and sequencing primers also considerably affects the microbial community detected in the samples. Thereby, very different proportions of pyrosequencing reads were obtained for some microbial lineages, such as the archaeal ANME-1, ANME-2c, and MBG-D and deltaproteobacterial subgroups. This work clearly indicates that the results from sequencing-based analyses, such as pyrosequencing, should be interpreted very carefully. Therefore, the combination of NGS with complementary approaches, such as fluorescence in situ hybridization (FISH)/catalyzed reporter deposition (CARD)-FISH or quantitative PCR (Q-PCR), would be desirable to gain a more comprehensive picture of environmental microbial communities.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Primers do DNA/genética , DNA Arqueal/genética , DNA Arqueal/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Ecossistema , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/isolamento & purificação
7.
Microbiol Spectr ; 12(5): e0416023, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38511950

RESUMO

Winter conditions greatly alter the limnological properties of lotic ecosystems and the availability of nutrients, carbon, and energy resources for microbial processes. However, the composition and metabolic capabilities of winter microbial communities are still largely uncharacterized. Here, we sampled the winter under-ice microbiome of the Great Whale River (Nunavik, Canada) and its discharge plume into Hudson Bay. We used a combination of 16S and 18S rRNA gene amplicon analysis and metagenomic sequencing to evaluate the size-fractionated composition and functional potential of the microbial plankton. These under-ice communities were diverse in taxonomic composition and metabolically versatile in terms of energy and carbon acquisition, including the capacity to carry out phototrophic processes and degrade aromatic organic matter. Limnological properties, community composition, and metabolic potential differed between shallow and deeper sites in the river, and between fresh and brackish water in the vertical profile of the plume. Community composition also varied by size fraction, with a greater richness of prokaryotes in the larger size fraction (>3 µm) and of microbial eukaryotes in the smaller size fraction (0.22-3 µm). The freshwater communities included cosmopolitan bacterial genera that were previously detected in the summer, indicating their persistence over time in a wide range of physico-chemical conditions. These observations imply that the microbial communities of subarctic rivers and their associated discharge plumes retain a broad taxonomic and functional diversity throughout the year and that microbial processing of complex terrestrial materials persists beneath the ice during the long winter season. IMPORTANCE: Microbiomes vary over multiple timescales, with short- and long-term changes in the physico-chemical environment. However, there is a scarcity of data and understanding about the structure and functioning of aquatic ecosystems during winter relative to summer. This is especially the case for seasonally ice-covered rivers, limiting our understanding of these ecosystems that are common throughout the boreal, subpolar, and polar regions. Here, we examined the winter under-ice microbiome of a Canadian subarctic river and its entry to the sea to characterize the taxonomic and functional features of the microbial community. We found substantial diversity in both composition and functional capabilities, including the capacity to degrade complex terrestrial compounds, despite the constraints imposed by a prolonged seasonal ice-cover and near-freezing water temperatures. This study indicates the ecological complexity and importance of winter microbiomes in ice-covered rivers and the coastal marine environment that they discharge into.


Assuntos
Bactérias , Microbiota , Plâncton , Rios , Estações do Ano , Rios/microbiologia , Plâncton/classificação , Plâncton/genética , Plâncton/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Microbiota/genética , Canadá , Água do Mar/microbiologia , RNA Ribossômico 16S/genética , Ecossistema , RNA Ribossômico 18S/genética
8.
ISME Commun ; 3(1): 82, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596370

RESUMO

Uncultivated microbial taxa represent a large fraction of global microbial diversity and likely drive numerous biogeochemical transformations in natural ecosystems. Geographically isolated, polar ecosystems are complex microbial biomes and refuges of underexplored taxonomic and functional biodiversity. Combining amplicon sequencing with genome-centric metagenomic analysis of samples from one of the world's northernmost lakes (Lake A, Ellesmere Island, Canadian High Arctic), we identified a novel bacterial taxon that dominates in the bottom layer of anoxic, sulfidic, relict sea water that was isolated from the Arctic Ocean some 3000 years ago. Based on phylogenomic comparative analyses, we propose that these bacteria represent a new Class within the poorly described Electryoneota/AABM5-125-24 candidate phylum. This novel class, for which we propose the name Tariuqbacteria, may be either a relict of ancient ocean conditions or endemic to this High Arctic system, provisionally providing a rare example of high-taxonomy level endemism. Consistent with the geochemistry of the bottom water, the genetic composition of the Candidatus Tariuqbacter genome revealed a strictly anaerobic lifestyle with the potential for sulfate and sulfur reduction, a versatile carbon metabolism and the capability to eliminate competing bacteria through methylarsenite production, suggesting an allelochemical influence on microbiome structure by this planktonic microbe.

9.
Microbiome ; 11(1): 104, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173775

RESUMO

BACKGROUND: Cyanobacteria and eukaryotic phytoplankton produce long-chain alkanes and generate around 100 times greater quantities of hydrocarbons in the ocean compared to natural seeps and anthropogenic sources. Yet, these compounds do not accumulate in the water column, suggesting rapid biodegradation by co-localized microbial populations. Despite their ecological importance, the identities of microbes involved in this cryptic hydrocarbon cycle are mostly unknown. Here, we identified genes encoding enzymes involved in the hydrocarbon cycle across the salinity gradient of a remote, vertically stratified, seawater-containing High Arctic lake that is isolated from anthropogenic petroleum sources and natural seeps. Metagenomic analysis revealed diverse hydrocarbon cycling genes and populations, with patterns of variation along gradients of light, salinity, oxygen, and sulfur that are relevant to freshwater, oceanic, hadal, and anoxic deep sea ecosystems. RESULTS: Analyzing genes and metagenome-assembled genomes down the water column of Lake A in the Canadian High Arctic, we detected microbial hydrocarbon production and degradation pathways at all depths, from surface freshwaters to dark, saline, anoxic waters. In addition to Cyanobacteria, members of the phyla Flavobacteria, Nitrospina, Deltaproteobacteria, Planctomycetes, and Verrucomicrobia had pathways for alkane and alkene production, providing additional sources of biogenic hydrocarbons. Known oil-degrading microorganisms were poorly represented in the system, while long-chain hydrocarbon degradation genes were identified in various freshwater and marine lineages such as Actinobacteria, Schleiferiaceae, and Marinimicrobia. Genes involved in sulfur and nitrogen compound transformations were abundant in hydrocarbon producing and degrading lineages, suggesting strong interconnections with nitrogen and sulfur cycles and a potential for widespread distribution in the ocean. CONCLUSIONS: Our detailed metagenomic analyses across water column gradients in a remote petroleum-free lake derived from the Arctic Ocean suggest that the current estimation of bacterial hydrocarbon production in the ocean could be substantially underestimated by neglecting non-phototrophic production and by not taking low oxygen zones into account. Our findings also suggest that biogenic hydrocarbons may sustain a large fraction of freshwater and oceanic microbiomes, with global biogeochemical implications for carbon, sulfur, and nitrogen cycles. Video Abstract.


Assuntos
Hidrocarbonetos , Microbiota , Canadá , Hidrocarbonetos/metabolismo , Microbiota/genética , Alcanos/metabolismo , Bactérias/genética , Genômica , Água , Lagos/microbiologia , Oxigênio/metabolismo , Enxofre/metabolismo
10.
Mol Ecol Resour ; 23(1): 190-204, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35839241

RESUMO

Mercury (Hg) methylation genes (hgcAB) mediate the formation of the toxic methylmercury and have been identified from diverse environments, including freshwater and marine ecosystems, Arctic permafrost, forest and paddy soils, coal-ash amended sediments, chlor-alkali plants discharges and geothermal springs. Here we present the first attempt at a standardized protocol for the detection, identification and quantification of hgc genes from metagenomes. Our Hg-cycling microorganisms in aquatic and terrestrial ecosystems (Hg-MATE) database, a catalogue of hgc genes, provides the most accurate information to date on the taxonomic identity and functional/metabolic attributes of microorganisms responsible for Hg methylation in the environment. Furthermore, we introduce "marky-coco", a ready-to-use bioinformatic pipeline based on de novo single-metagenome assembly, for easy and accurate characterization of hgc genes from environmental samples. We compared the recovery of hgc genes from environmental metagenomes using the marky-coco pipeline with an approach based on coassembly of multiple metagenomes. Our data show similar efficiency in both approaches for most environments except those with high diversity (i.e., paddy soils) for which a coassembly approach was preferred. Finally, we discuss the definition of true hgc genes and methods to normalize hgc gene counts from metagenomes.


Assuntos
Mercúrio , Mercúrio/análise , Metagenoma , Metilação , Ecossistema , Consenso , Solo
11.
ISME Commun ; 2(1): 104, 2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37938285

RESUMO

The transition from ice-covered to open water is a recurring feature of the Arctic and sub-Arctic, but microbial diversity and cascading effects on the microbial food webs is poorly known. Here, we investigated microbial eukaryote, bacterial and archaeal communities in Hudson Bay (sub-Arctic, Canada) under sea-ice cover and open waters conditions. Co-occurrence networks revealed a <3 µm pico‒phytoplankton-based food web under the ice and a >3 µm nano‒microphytoplankton-based food web in the open waters. The ice-edge communities were characteristic of post-bloom conditions with high proportions of the picophytoplankton Micromonas and Bathycoccus. Nano‒ to micro‒phytoplankton and ice associated diatoms were detected throughout the water column, with the sympagic Melosira arctica exclusive to ice-covered central Hudson Bay and Thalassiosira in open northwestern Hudson Bay. Heterotrophic microbial eukaryotes and prokaryotes also differed by ice-state, suggesting a linkage between microbes at depth and surface phytoplankton bloom state. The findings suggest that a longer open water season may favor the establishment of a large phytoplankton-based food web at the subsurface chlorophyll maxima (SCM), increasing carbon export from pelagic diatoms to deeper waters and affect higher trophic levels in the deep Hudson Bay.

12.
ISME Commun ; 2(1): 4, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37938653

RESUMO

DPANN archaea account for half of the archaeal diversity of the biosphere, but with few cultivated representatives, their metabolic potential and environmental functions are poorly understood. The extreme geochemical and environmental conditions in meromictic ice-capped Lake A, in the Canadian High Arctic, provided an isolated, stratified model ecosystem to resolve the distribution and metabolism of uncultured aquatic DPANN archaea living across extreme redox and salinity gradients, from freshwater oxygenated conditions, to saline, anoxic, sulfidic waters. We recovered 28 metagenome-assembled genomes (MAGs) of DPANN archaea that provided genetic insights into their ecological function. Thiosulfate oxidation potential was detected in aerobic Woesearchaeota, whereas diverse metabolic functions were identified in anaerobic DPANN archaea, including degradation and fermentation of cellular compounds, and sulfide and polysulfide reduction. We also found evidence for "vampiristic" metabolism in several MAGs, with genes coding for pore-forming toxins, peptidoglycan degradation, and RNA scavenging. The vampiristic MAGs co-occurred with other DPANNs having complementary metabolic capacities, leading to the possibility that DPANN form interspecific consortia that recycle microbial carbon, nutrients and complex molecules through a DPANN archaeal shunt, adding hidden novel complexity to anaerobic microbial food webs.

13.
Front Microbiol ; 13: 1073483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699594

RESUMO

Patescibacteria form a highly diverse and widespread superphylum of uncultured microorganisms representing a third of the global microbial diversity. Most of our knowledge on Patescibacteria putative physiology relies on metagenomic mining and metagenome-assembled genomes, but the in situ activities and the ecophysiology of these microorganisms have been rarely explored, leaving the role of Patescibacteria in ecosystems elusive. Using a genome-centric metatranscriptomic approach, we analyzed the diel and seasonal gene transcription profiles of 18 Patescibacteria populations in brackish microbial mats to test whether our understanding of Patescibacteria metabolism allows the extrapolation of their in situ activities. Although our results revealed a circadian cycle in Patescibacteria activities, a strong streamlined genetic expression characterized the Patescibacteria populations. This result has a major consequence for the extrapolation of their physiology and environmental function since most transcribed genes were uncharacterized, indicating that the ecophysiology of Patescibacteria cannot be yet reliably predicted from genomic data.

14.
NPJ Biofilms Microbiomes ; 7(1): 83, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799579

RESUMO

Methylmercury, biomagnifying through food chains, is highly toxic for aquatic life. Its production and degradation are largely driven by microbial transformations; however, diversity and metabolic activity of mercury transformers, resulting in methylmercury concentrations in environments, remain poorly understood. Microbial mats are thick biofilms where oxic and anoxic metabolisms cooccur, providing opportunities to investigate the complexity of the microbial mercury transformations over contrasted redox conditions. Here, we conducted a genome-resolved metagenomic and metatranscriptomic analysis to identify putative activity of mercury reducers, methylators and demethylators in microbial mats strongly contaminated by mercury. Our transcriptomic results revealed the major role of rare microorganisms in mercury cycling. Mercury methylators, mainly related to Desulfobacterota, expressed a large panel of metabolic activities in sulfur, iron, nitrogen, and halogen compound transformations, extending known activities of mercury methylators under suboxic to anoxic conditions. Methylmercury detoxification processes were dissociated in the microbial mats with methylmercury cleavage being carried out by sulfide-oxidizing Thiotrichaceae and Rhodobacteraceae populations, whereas mercury reducers included members of the Verrucomicrobia, Bacteroidetes, Gammaproteobacteria, and different populations of Rhodobacteraceae. However most of the mercury reduction was potentially carried out anaerobically by sulfur- and iron-reducing Desulfuromonadaceae, revising our understanding of mercury transformers ecophysiology.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Bactérias/genética , Mercúrio/toxicidade , Metagenoma , Transcriptoma
15.
Microorganisms ; 9(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670234

RESUMO

Over the last decade, metagenomic studies have revealed the impact of oil production on the microbial ecology of petroleum reservoirs. However, despite their fundamental roles in bioremediation of hydrocarbons, biocorrosion, biofouling and hydrogen sulfide production, oil field and oil production infrastructure microbiomes are poorly explored. Understanding of microbial activities within oil production facilities is therefore crucial for environmental risk mitigation, most notably during decommissioning. The analysis of the planktonic microbial community from the aqueous phase of a subsea oil-storage structure was conducted. This concrete structure was part of the production platform of the Brent oil field (North Sea), which is currently undergoing decommissioning. Quantification and sequencing of microbial 16S rRNA genes, metagenomic analysis and reconstruction of metagenome assembled genomes (MAGs) revealed a unique microbiome, strongly dominated by organisms related to Dethiosulfatibacter and Cloacimonadetes. Consistent with the hydrocarbon content in the aqueous phase of the structure, a strong potential for degradation of low molecular weight aromatic hydrocarbons was apparent in the microbial community. These degradation pathways were associated with taxonomically diverse microorganisms, including the predominant Dethiosulfatibacter and Cloacimonadetes lineages, expanding the list of potential hydrocarbon degraders. Genes associated with direct and indirect interspecies exchanges (multiheme type-C cytochromes, hydrogenases and formate/acetate metabolism) were widespread in the community, suggesting potential syntrophic hydrocarbon degradation processes in the system. Our results illustrate the importance of genomic data for informing decommissioning strategies in marine environments and reveal that hydrocarbon-degrading community composition and metabolisms in man-made marine structures might differ markedly from natural hydrocarbon-rich marine environments.

16.
Microbiome ; 9(1): 46, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593438

RESUMO

BACKGROUND: The sulfur cycle encompasses a series of complex aerobic and anaerobic transformations of S-containing molecules and plays a fundamental role in cellular and ecosystem-level processes, influencing biological carbon transfers and other biogeochemical cycles. Despite their importance, the microbial communities and metabolic pathways involved in these transformations remain poorly understood, especially for inorganic sulfur compounds of intermediate oxidation states (thiosulfate, tetrathionate, sulfite, polysulfides). Isolated and highly stratified, the extreme geochemical and environmental features of meromictic ice-capped Lake A, in the Canadian High Arctic, provided an ideal model ecosystem to resolve the distribution and metabolism of aquatic sulfur cycling microorganisms along redox and salinity gradients. RESULTS: Applying complementary molecular approaches, we identified sharply contrasting microbial communities and metabolic potentials among the markedly distinct water layers of Lake A, with similarities to diverse fresh, brackish and saline water microbiomes. Sulfur cycling genes were abundant at all depths and covaried with bacterial abundance. Genes for oxidative processes occurred in samples from the oxic freshwater layers, reductive reactions in the anoxic and sulfidic bottom waters and genes for both transformations at the chemocline. Up to 154 different genomic bins with potential for sulfur transformation were recovered, revealing a panoply of taxonomically diverse microorganisms with complex metabolic pathways for biogeochemical sulfur reactions. Genes for the utilization of sulfur cycle intermediates were widespread throughout the water column, co-occurring with sulfate reduction or sulfide oxidation pathways. The genomic bin composition suggested that in addition to chemical oxidation, these intermediate sulfur compounds were likely produced by the predominant sulfur chemo- and photo-oxidisers at the chemocline and by diverse microbial degraders of organic sulfur molecules. CONCLUSIONS: The Lake A microbial ecosystem provided an ideal opportunity to identify new features of the biogeochemical sulfur cycle. Our detailed metagenomic analyses across the broad physico-chemical gradients of this permanently stratified lake extend the known diversity of microorganisms involved in sulfur transformations over a wide range of environmental conditions. The results indicate that sulfur cycle intermediates and organic sulfur molecules are major sources of electron donors and acceptors for aquatic and sedimentary microbial communities in association with the classical sulfur cycle. Video abstract.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Ecossistema , Lagos/microbiologia , Metagenoma , Enxofre/metabolismo , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Canadá , Oxirredução
17.
Microorganisms ; 8(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105630

RESUMO

Streams and rivers convey freshwater from lands to the oceans, transporting various organic particles, minerals, and living organisms. Microbial communities are key components of freshwater food webs and take up, utilize, and transform this material. However, there are still important gaps in our understanding of the dynamic of these organisms along the river channels. Using high-throughput 16S and 18S rRNA gene sequencing and quantitative PCR on a 11-km long transect of the Saint-Charles River (Quebec, CA), starting from its main source, the Saint-Charles Lake, we show that bacterial and protist community structures in the river drifted quickly but progressively downstream of its source. The dominant Operational Taxonomic Units (OTUs) of the lake, notably related to Cyanobacteria, decreased in proportions, whereas relative proportions of other OTUs, such as a Pseudarcicella OTU, increased along the river course, becoming quickly predominant in the river system. Both prokaryotic and protist communities changed along the river transect, suggesting a strong impact of the shift from a stratified lake ecosystem to a continuously mixed river environment. This might reflect the cumulative effects of the increasing water turbulence, fluctuations of physicochemical conditions, differential predation pressure in the river, especially in the lake outlet by benthic filter feeders, or the relocation of microorganisms, through flocculation, sedimentation, resuspension, or inoculation from the watershed. Our study reveals that the transit of water in a river system can greatly impact both bacterial and micro-eukaryotic community composition, even over a short distance, and, potentially, the transformation of materials in the water column.

18.
Viruses ; 12(11)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105728

RESUMO

Permafrost thaw lakes including thermokarst lakes and ponds are ubiquitous features of Subarctic and Arctic landscapes and are hotspots of microbial activity. Input of terrestrial organic matter into the planktonic microbial loop of these lakes may greatly amplify global greenhouse gas emissions. This microbial loop, dominated in the summer by aerobic microorganisms including phototrophs, is radically different in the winter, when metabolic processes shift to the anaerobic degradation of organic matter. Little is known about the viruses that infect these microbes, despite evidence that viruses can control microbial populations and influence biogeochemical cycling in other systems. Here, we present the results of a metagenomics-based study of viruses in the larger than 0.22 µm fraction across two seasons (summer and winter) in a permafrost thaw lake in Subarctic Canada. We uncovered 351 viral populations (vOTUs) in the surface waters of this lake, with diversity significantly greater during the summer. We also identified and characterized several phage genomes and prophages, which were mostly present in the summer. Finally, we compared the viral community of this waterbody to other habitats and found unexpected similarities with distant bog lakes in North America.


Assuntos
Lagos/virologia , Metagenômica , Pergelissolo/virologia , Estações do Ano , Vírus/genética , Regiões Árticas , Bacteriófagos/genética , Canadá , Genoma Viral
19.
Microorganisms ; 8(9)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842646

RESUMO

Thermokarst lakes are one of the most abundant types of microbial ecosystems in the circumpolar North. These shallow basins are formed by the thawing and collapse of ice-rich permafrost, with subsequent filling by snow and ice melt. Until now, permafrost thaw lakes have received little attention for isolation of microorganisms by culture-based analysis. The discovery of novel psychrophiles and their biomolecules makes these extreme environments suitable sources for the isolation of new strains, including for potential biotechnological applications. In this study, samples of bottom sediments were collected from three permafrost thaw lakes in subarctic Québec, Canada. Their diverse microbial communities were characterized by 16S rRNA gene amplicon analysis, and subsamples were cultured for the isolation of bacterial strains. Phenotypic and genetic characterization of the isolates revealed affinities to the genera Pseudomonas, Paenibacillus, Acinetobacter,Staphylococcus and Sphingomonas. The isolates were then evaluated for their production of extracellular enzymes and exopolymers. Enzymes of potential biotechnological interest included α and ß-glucosidase, α and ß-maltosidase, ß-xylosidase and cellobiohydrolase. One isolate, Pseudomonas extremaustralis strain 2ASCA, also showed the capability to produce, in the loosely bound cell fraction, a levan-type polysaccharide with a yield of 613 mg/L of culture, suggesting its suitability as a candidate for eco-sustainable alternatives to commercial polymers.

20.
Front Microbiol ; 10: 1656, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379798

RESUMO

Permafrost thawing results in the formation of thermokarst lakes, which are biogeochemical hotspots in northern landscapes and strong emitters of greenhouse gasses to the atmosphere. Most studies of thermokarst lakes have been in summer, despite the predominance of winter and ice-cover over much of the year, and the microbial ecology of these waters under ice remains poorly understood. Here we first compared the summer versus winter microbiomes of a subarctic thermokarst lake using DNA- and RNA-based 16S rRNA amplicon sequencing and qPCR. We then applied comparative metagenomics and used genomic bin reconstruction to compare the two seasons for changes in potential metabolic functions in the thermokarst lake microbiome. In summer, the microbial community was dominated by Actinobacteria and Betaproteobacteria, with phototrophic and aerobic pathways consistent with the utilization of labile and photodegraded substrates. The microbial community was strikingly different in winter, with dominance of methanogens, Planctomycetes, Chloroflexi and Deltaproteobacteria, along with various taxa of the Patescibacteria/Candidate Phyla Radiation (Parcubacteria, Microgenomates, Omnitrophica, Aminicenantes). The latter group was underestimated or absent in the amplicon survey, but accounted for about a third of the metagenomic reads. The winter lineages were associated with multiple reductive metabolic processes, fermentations and pathways for the mobilization and degradation of complex organic matter, along with a strong potential for syntrophy or cross-feeding. The results imply that the summer community represents a transient stage of the annual cycle, and that carbon dioxide and methane production continue through the prolonged season of ice cover via a taxonomically distinct winter community and diverse mechanisms of permafrost carbon transformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA