Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Langmuir ; 39(23): 8255-8266, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37265082

RESUMO

In vitro cell-based characterization methods of nanoparticles are generally static and require the use of secondary analysis techniques and labeling agents. In this study, bare niosomes and chitosan-coated niosomes (chitosomes) and their interactions with intestinal cells are studied under dynamic conditions and without fluorescent probes, using surface plasmon resonance (SPR)-based cell sensing. Niosomes and chitosomes were synthesized by using Tween 20 and cholesterol in a 15 mM:15 mM ratio and then characterized by dynamic light scattering (DLS). DLS analysis demonstrated that bare niosomes had average sizes of ∼125 nm, polydispersity index (PDI) below 0.2, and a negative zeta (ζ)-potential of -35.6 mV. In turn, chitosomes had increased sizes up to ∼180 nm, with a PDI of 0.2-0.3 and a highly positive ζ-potential of +57.9 mV. The viability of HT29-MTX, Caco-2, and Caco-2/HT29-MTX cocultured cells showed that both niosomes and chitosomes are cytocompatible up to concentrations of 31.6 µg/mL for at least 240 min. SPR analysis demonstrated that chitosomes interact more efficiently with HT29-MTX, Caco-2, and Caco-2/HT29-MTX cocultures compared to bare niosomes. The resulting SPR measurements were further supported by confocal microscopy and flow cytometry studies, which demonstrated that this method is a useful complementary or even alternative tool to directly characterize the interactions between niosomes and in vitro cell models in label-free and real-time conditions.


Assuntos
Quitosana , Lipossomos , Humanos , Células CACO-2 , Intestinos
2.
Bioconjug Chem ; 33(1): 206-218, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985282

RESUMO

Glyco-decorated spherical nucleic acids (SNAs) may be attractive delivery vehicles, emphasizing the sugar-specific effect on the outer sphere of the construct and at the same time hiding unfavorable distribution properties of the loaded oligonucleotides. As examples of such nanoparticles, tripodal sugar constituents of bleomycin were synthesized and conjugated with a fluorescence-labeled antisense oligonucleotide (AONARV7). Successive copper(I)-catalyzed azide-alkyne and strain-promoted alkyne-nitrone cycloadditions (SPANC) were utilized for the synthesis. Then, the glyco-AONARV7 conjugates were hybridized with complementary strands of a C60-based molecular spherical nucleic acid (i.e., a hybridization-mediated carrier). The formation and stability of these assembled glyco-decorated SNAs were evaluated by polyacrylamide gel electrophoresis (PAGE), UV melting profile analysis, and time-resolved fluorescence spectroscopy. Association constants were extracted from time-resolved fluorescence data. Preliminary cellular uptake experiments of the glyco-AONARV7 conjugates (120 nM solutions) and of the corresponding glyco-decorated SNAs (10 nM solutions) with human prostate cancer cells (PC3) showed an efficient uptake in each case. A marked variation in intracellular distribution was observed.


Assuntos
Ouro
3.
Bioconjug Chem ; 32(6): 1130-1138, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33998229

RESUMO

An azide-functionalized 12-armed Buckminster fullerene has been monosubstituted in organic media with a substoichiometric amount of cyclooctyne-modified oligonucleotides. Exposing the intermediate products then to the same reaction (i.e., strain-promoted alkyne-azide cycloaddition, SPAAC) with an excess of slightly different oligonucleotide constituents in an aqueous medium yields molecularly defined monofunctionalized spherical nucleic acids (SNAs). This procedure offers a controlled synthesis scheme in which one oligonucleotide arm can be functionalized with labels or other conjugate groups (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, DOTA, and Alexa-488 demonstrated), whereas the rest of the 11 arms can be left unmodified or modified by other conjugate groups in order to decorate the SNAs' outer sphere. Extra attention has been paid to the homogeneity and authenticity of the C60-azide scaffold used for the assembly of full-armed SNAs.


Assuntos
Fulerenos/química , Ácidos Nucleicos/química , Alcinos/química , Azidas/química , Catálise , Química Click , Cobre/química , Reação de Cicloadição
4.
Mol Pharm ; 18(2): 699-713, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32584047

RESUMO

The vitreous humor is the first barrier encountered by intravitreally injected nanoparticles. Lipid-based nanoparticles in the vitreous are studied by evaluating their diffusion with single-particle tracking technology and by characterizing their protein coronae with surface plasmon resonance and high-resolution proteomics. Single-particle tracking results indicate that the vitreal mobility of the formulations is dependent on their charge. Anionic and neutral formulations are mobile, whereas larger (>200 nm) neutral particles have restricted diffusion, and cationic particles are immobilized in the vitreous. PEGylation increases the mobility of cationic and larger neutral formulations but does not affect anionic and smaller neutral particles. Convection has a significant role in the pharmacokinetics of nanoparticles, whereas diffusion drives the transport of antibodies. Surface plasmon resonance studies determine that the vitreal corona of anionic formulations is sparse. Proteomics data reveals 76 differentially abundant proteins, whose enrichment is specific to either the hard or the soft corona. PEGylation does not affect protein enrichment. This suggests that protein-specific rather than formulation-specific factors are drivers of protein adsorption on nanoparticles in the vitreous. In summary, our findings contribute to understanding the pharmacokinetics of nanoparticles in the vitreous and help advance the development of nanoparticle-based treatments for eye diseases.


Assuntos
Nanopartículas/química , Soluções Oftálmicas/administração & dosagem , Doenças Retinianas/tratamento farmacológico , Corpo Vítreo/metabolismo , Adsorção , Animais , Difusão , Composição de Medicamentos/métodos , Humanos , Injeções Intravítreas , Lipossomos , Soluções Oftálmicas/farmacocinética , Tamanho da Partícula , Polietilenoglicóis/química , Coroa de Proteína/análise , Coroa de Proteína/metabolismo , Proteômica , Propriedades de Superfície , Sus scrofa
5.
Anal Chem ; 92(21): 14509-14516, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33054153

RESUMO

Real-time label-free techniques are used to profile G protein-coupled receptor (GPCR) signaling pathways in living cells. However, interpreting the label-free signal responses is challenging, and previously reported methods do not reliably separate pathways from each other. In this study, a continuous angular-scanning surface plasmon resonance (SPR) technique is utilized for measuring label-free GPCR signal profiles. We show how the continuous angular-scanning ability, measuring up to nine real-time label-free parameters simultaneously, results in more information-rich label-free signal profiles for different GPCR pathways, providing a more accurate pathway separation. For this, we measured real-time full-angular SPR response curves for Gs, Gq, and Gi signaling pathways in living cells. By selecting two of the most prominent label-free parameters: the full SPR curve angular and intensity shifts, we present how this analysis approach can separate each of the three signaling pathways in a straightforward single-step analysis setup, without concurrent use of signal inhibitors or other response modulating compounds.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Ressonância de Plasmônio de Superfície/métodos , Animais , Células CHO , Cricetulus , Humanos
6.
Mol Ther ; 26(9): 2315-2325, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30005865

RESUMO

The approval of the first oncolytic virus for the treatment of metastatic melanoma and the compiling evidence that the use of oncolytic viruses can enhance cancer immunotherapies targeted against various immune checkpoint proteins has attracted great interest in the field of cancer virotherapy. We have developed a novel platform for clinically relevant enveloped viruses that can direct the virus-induced immune response against tumor antigens. By physically attaching tumor-specific peptides onto the viral envelope of vaccinia virus and herpes simplex virus 1 (HSV-1), we were able to induce a strong T cell-specific immune response toward these tumor antigens. These therapeutic peptides could be attached onto the viral envelope by using a cell-penetrating peptide sequence derived from human immunodeficiency virus Tat N-terminally fused to the tumor-specific peptides or, alternatively, therapeutic peptides could be conjugated with cholesterol for the attachment of the peptides onto the viral envelope. We used two mouse models of melanoma termed B16.OVA and B16-F10 for testing the efficacy of OVA SIINFEKL-peptide-coated viruses and gp100-Trp2-peptide-coated viruses, respectively, and show that by coating the viral envelope with therapeutic peptides, the anti-tumor immunity and the number of tumor-specific CD8+ T cells in the tumor microenvironment can be significantly enhanced.


Assuntos
Vacinas Anticâncer/química , Peptídeos/metabolismo , Células A549 , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Chlorocebus aethiops , Herpesvirus Humano 1/metabolismo , Humanos , Melanoma/imunologia , Melanoma/terapia , Camundongos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos , Peptídeos/imunologia , Vaccinia virus/metabolismo , Células Vero , Proteínas do Envelope Viral/metabolismo
7.
J Lipid Res ; 59(4): 670-683, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29438987

RESUMO

LCAT is an enzyme responsible for the formation of cholesteryl esters from unesterified cholesterol (UC) and phospholipid (PL) molecules in HDL particles. However, it is poorly understood how LCAT interacts with lipoproteins and how apoA-I activates it. Here we have studied the interactions between LCAT and lipids through molecular simulations. In addition, we studied the binding of LCAT to apoA-I-derived peptides, and their effect on LCAT lipid association-utilizing experiments. Results show that LCAT anchors itself to lipoprotein surfaces by utilizing nonpolar amino acids located in the membrane-binding domain and the active site tunnel opening. Meanwhile, the membrane-anchoring hydrophobic amino acids attract cholesterol molecules next to them. The results also highlight the role of the lid-loop in the lipid binding and conformation of LCAT with respect to the lipid surface. The apoA-I-derived peptides from the LCAT-activating region bind to LCAT and promote its lipid surface interactions, although some of these peptides do not bind lipids individually. The transfer free-energy of PL from the lipid bilayer into the active site is consistent with the activation energy of LCAT. Furthermore, the entry of UC molecules into the active site becomes highly favorable by the acylation of SER181.


Assuntos
Apolipoproteína A-I/química , Lipídeos/química , Peptídeos/química , Fosfatidilcolina-Esterol O-Aciltransferase/química , Apolipoproteína A-I/metabolismo , Domínio Catalítico , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Peptídeos/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo
8.
Langmuir ; 34(27): 8081-8091, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29894192

RESUMO

Supported lipid bilayers (SLBs) have been used extensively as an effective model of biological membranes, in the context of in vitro biophysics research, and the membranes of liposomes, in the context of the development of nanoscale drug delivery devices. Despite numerous surface-sensitive techniques having been applied to their study, the comprehensive optical characterization of SLBs using surface plasmon resonance (SPR) has not been conducted. In this study, Fresnel multilayer analysis is utilized to effectively calculate layer parameters (thickness and refractive indices) with the aid of dual-wavelength and dispersion coefficient analysis, in which the linear change in the refractive index as a function of wavelength is assumed. Using complementary information from impedance-based quartz crystal microbalance experiments, biophysical properties, for example, area-per-lipid-molecule and the quantity of lipid-associated water molecules, are calculated for different lipid types and mixtures, one of which is representative of a raft-forming lipid mixture. It is proposed that the hydration layer beneath the bilayer is, in fact, an integral part of the measured optical signal. Also, the traditional Jung model analysis and the ratio of SPR responses are investigated in terms of assessing the structure of the lipid layer that is formed.


Assuntos
Bicamadas Lipídicas/química , Técnicas de Microbalança de Cristal de Quartzo , Ressonância de Plasmônio de Superfície , Biofísica , Lipossomos
9.
Biomacromolecules ; 19(10): 3983-3993, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30207704

RESUMO

Pharmaceutical nanosuspensions are formed when drug crystals are suspended in aqueous media in the presence of stabilizers. This technology offers a convenient way to enhance the dissolution of poorly water-soluble drug compounds. The stabilizers exert their action through electrostatic or steric interactions, however, the molecular requirements of stabilizing agents have not been studied extensively. Here, four structurally related amphiphilic Janus-dendrimers were synthesized and screened to determine the roles of different macromolecular domains on the stabilization of drug crystals. Physical interaction and nanomilling experiments have substantiated that Janus-dendrimers with fourth generation hydrophilic dendrons were superior to third generation analogues and Poloxamer 188 in stabilizing indomethacin suspensions. Contact angle and surface plasmon resonance measurements support the hypothesis that Janus-dendrimers bind to indomethacin surfaces via hydrophobic interactions and that the number of hydrophobic alkyl tails determines the adsorption kinetics of the Janus-dendrimers. The results showed that amphiphilic Janus-dendrimers adsorb onto drug particles and thus can be used to provide steric stabilization against aggregation and recrystallization. The modular synthetic route for new amphiphilic Janus-dendrimers offers, thus, for the first time a versatile platform for stable general-use stabilizing agents of drug suspensions.


Assuntos
Dendrímeros/química , Indometacina/química , Poloxâmero/química , Tensoativos/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Suspensões
10.
Biochim Biophys Acta ; 1858(10): 2334-2352, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26915693

RESUMO

Combined experimental and computational studies of lipid membranes and liposomes, with the aim to attain mechanistic understanding, result in a synergy that makes possible the rational design of liposomal drug delivery system (LDS) based therapies. The LDS is the leading form of nanoscale drug delivery platform, an avenue in drug research, known as "nanomedicine", that holds the promise to transcend the current paradigm of drug development that has led to diminishing returns. Unfortunately this field of research has, so far, been far more successful in generating publications than new drug therapies. This partly results from the trial and error based methodologies used. We discuss experimental techniques capable of obtaining mechanistic insight into LDS structure and behavior. Insight obtained purely experimentally is, however, limited; computational modeling using molecular dynamics simulation can provide insight not otherwise available. We review computational research, that makes use of the multiscale modeling paradigm, simulating the phospholipid membrane with all atom resolution and the entire liposome with coarse grained models. We discuss in greater detail the computational modeling of liposome PEGylation. Overall, we wish to convey the power that lies in the combined use of experimental and computational methodologies; we hope to provide a roadmap for the rational design of LDS based therapies. Computational modeling is able to provide mechanistic insight that explains the context of experimental results and can also take the lead and inspire new directions for experimental research into LDS development. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos , Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Polietilenoglicóis , Técnicas de Microbalança de Cristal de Quartzo , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA