Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047194

RESUMO

Niemann-Pick type C1 (NPC1) is an endolysosomal transmembrane protein involved in the export of cholesterol and sphingolipids to other cellular compartments such as the endoplasmic reticulum and plasma membrane. NPC1 loss of function is the major cause of NPC disease, a rare lysosomal storage disorder characterized by an abnormal accumulation of lipids in the late endosomal/lysosomal network, mitochondrial dysfunction, and impaired autophagy. NPC phenotypes are conserved in yeast lacking Ncr1, an orthologue of human NPC1, leading to premature aging. Herein, we performed a phosphoproteomic analysis to investigate the effect of Ncr1 loss on cellular functions mediated by the yeast lysosome-like vacuoles. Our results revealed changes in vacuolar membrane proteins that are associated mostly with vesicle biology (fusion, transport, organization), autophagy, and ion homeostasis, including iron, manganese, and calcium. Consistently, the cytoplasm to vacuole targeting (Cvt) pathway was increased in ncr1∆ cells and autophagy was compromised despite TORC1 inhibition. Moreover, ncr1∆ cells exhibited iron overload mediated by the low-iron sensing transcription factor Aft1. Iron deprivation restored the autophagic flux of ncr1∆ cells and increased its chronological lifespan and oxidative stress resistance. These results implicate iron overload on autophagy impairment, oxidative stress sensitivity, and cell death in the yeast model of NPC1.


Assuntos
Sobrecarga de Ferro , Doença de Niemann-Pick Tipo C , Humanos , Saccharomyces cerevisiae/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ferro/metabolismo , Longevidade , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Proteínas de Membrana/metabolismo , Lisossomos/metabolismo , Vacúolos/metabolismo , Autofagia , Sobrecarga de Ferro/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo
2.
Biochim Biophys Acta Mol Basis Dis ; 1864(1): 79-88, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28988886

RESUMO

The Niemann-Pick type C is a rare neurodegenerative disease that results from loss-of-function point mutations in NPC1 or NPC2, which affect the homeostasis of sphingolipids and sterols in human cells. We have previously shown that yeast lacking Ncr1, the orthologue of human NPC1 protein, display a premature ageing phenotype and higher sensitivity to oxidative stress associated with mitochondrial dysfunctions and accumulation of long chain bases. In this study, a lipidomic analysis revealed specific changes in the levels of ceramide species in ncr1Δ cells, including decreases in dihydroceramides and increases in phytoceramides. Moreover, the activation of Sit4, a ceramide-activated protein phosphatase, increased in ncr1Δ cells. Deletion of SIT4 or CDC55, its regulatory subunit, increased the chronological lifespan and hydrogen peroxide resistance of ncr1Δ cells and suppressed its mitochondrial defects. Notably, Sch9 and Pkh1-mediated phosphorylation of Sch9 decreased significantly in ncr1Δsit4Δ cells. These results suggest that phytoceramide accumulation and Sit4-dependent signaling mediate the mitochondrial dysfunction and shortened lifespan in the yeast model of Niemann-Pick type C1, in part through modulation of the Pkh1-Sch9 pathway.


Assuntos
Mitocôndrias/fisiologia , Dinâmica Mitocondrial/genética , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Proteína Fosfatase 2/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Esfingolipídeos/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Modelos Biológicos , Organismos Geneticamente Modificados , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-29032057

RESUMO

Iron acquisition systems have to be tightly regulated to assure a continuous supply of iron, since it is essential for survival, but simultaneously to prevent iron overload that is toxic to the cells. In budding yeast, the low­iron sensing transcription factor Aft1p is a master regulator of the iron regulon. Our previous work revealed that bioactive sphingolipids modulate iron homeostasis as yeast cells lacking the sphingomyelinase Isc1p exhibit an upregulation of the iron regulon. In this study, we show that Isc1p impacts on iron accumulation and localization. Notably, Aft1p is activated in isc1Δ cells due to a decrease in its phosphorylation and an increase in its nuclear levels. Consistently, the expression of a phosphomimetic version of Aft1p-S210/S224 that favours its nuclear export abolished iron accumulation in isc1Δ cells. Notably, the Hog1p kinase, homologue of mammalian p38, interacts with and directly phosphorylates Aft1p at residues S210 and S224. However, Hog1p-Aft1p interaction decreases in isc1Δ cells, which likely contributes to Aft1p dephosphorylation and consequently to Aft1p activation and iron overload in isc1Δ cells. These results suggest that alterations in sphingolipid composition in isc1Δ cells may impact on iron homeostasis by disturbing the regulation of Aft1p by Hog1p. To our knowledge, Hog1p is the first kinase reported to directly regulate Aft1p, impacting on iron homeostasis.


Assuntos
Ferro/metabolismo , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/metabolismo , Homeostase/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Organismos Geneticamente Modificados , Fosforilação/genética , Ligação Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
4.
Biochim Biophys Acta ; 1861(1): 21-33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26477382

RESUMO

The vacuoles play important roles in cellular homeostasis and their functions include the digestion of cytoplasmic material and organelles derived from autophagy. Conserved nutrient signaling pathways regulate vacuolar function and autophagy, ensuring normal cell and organismal development and aging. Recent evidence implicates sphingolipids in the modulation of these processes, but the impact of ceramide signaling on vacuolar dynamics and autophagy remains largely unknown. Here, we show that yeast cells lacking Isc1p, an orthologue of mammalian neutral sphingomyelinase type 2, exhibit vacuolar fragmentation and dysfunctions, namely decreased Pep4p-mediated proteolysis and V-ATPase activity, which impairs vacuolar acidification. Moreover, these phenotypes are suppressed by downregulation of the ceramide-activated protein phosphatase Sit4p. The isc1Δ cells also exhibit defective Cvt and vesicular trafficking in a Sit4p-dependent manner, ultimately contributing to a reduced autophagic flux. Importantly, these phenotypes are also suppressed by downregulation of the nutrient signaling kinase TORC1, which is known to inhibit Sit4p and autophagy, or Sch9p. These results support a model in which Sit4p functions downstream of Isc1p in a TORC1-independent, ceramide-dependent signaling branch that impairs vacuolar function and vesicular trafficking, leading to autophagic defects in yeast.


Assuntos
Autofagia/fisiologia , Ceramidas/fisiologia , Proteína Fosfatase 2/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Fosfolipases Tipo C/fisiologia , Vacúolos/fisiologia , Transdução de Sinais , Vesículas Transportadoras/fisiologia , Resposta a Proteínas não Dobradas
5.
Biogerontology ; 18(1): 3-34, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27804052

RESUMO

Aging is a multifactorial process determined by molecular, cellular and systemic factors and it is well established that advancing age is a leading risk factor for several neurodegenerative diseases. In fact, the close association of aging and neurodegenerative disorders has placed aging as the greatest social and economic challenge of the 21st century, and age-related diseases have also become a key priority for countries worldwide. The growing need to better understand both aging and neurodegenerative processes has led to the development of simple eukaryotic models amenable for mechanistic studies. Saccharomyces cerevisiae has proven to be an unprecedented experimental model to study the fundamental aspects of aging and to decipher the intricacies of neurodegenerative disorders greatly because the molecular mechanisms underlying these processes are evolutionarily conserved from yeast to human. Moreover, yeast offers several methodological advantages allowing a rapid and relatively easy way of establishing gene-protein-function associations. Here we review different aging theories, common cellular pathways driving aging and neurodegenerative diseases and discuss the major contributions of yeast to the state-of-art knowledge in both research fields.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Modelos Biológicos , Doenças Neurodegenerativas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Humanos
6.
Mol Microbiol ; 91(3): 438-51, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24286211

RESUMO

The Niemann-Pick type C is a rare metabolic disease with a severe neurodegenerative phenotype characterized by an accumulation of high amounts of lipids (cholesterol and sphingolipids) in the late endosomal/lysosomal network. It is caused by loss-of-function point mutations in either NPC1 or NPC2, which seem to mediate proper intracellular lipid transport through endocytic pathway. In this study, we show that yeast cells lacking Ncr1p, an orthologue of mammalian NPC1, exhibited a higher sensitivity to hydrogen peroxide and a shortened chronological lifespan. These phenotypes were associated with increased levels of oxidative stress markers, decreased levels of antioxidant defences and mitochondrial dysfunctions. Moreover, we report that Ncr1p-deficient cells displayed high levels of long chain bases (LCB), and that Sch9p-phospho-T570 and Sch9p levels increased in ncr1Δ cells through a mechanism regulated by Pkh1p, a LCB-activated protein kinase. Notably, deletion of PKH1 or SCH9 suppressed ncr1Δ phenotypes but downregulation of de novo sphingolipid biosynthesis had no protective effect, suggesting that LCBs accumulation may result from an increased turnover of complex sphingolipids. These results suggest that sphingolipid signalling through Pkh1p-Sch9p mediate mitochondrial dysfunction, oxidative stress sensitivity and shortened chronological lifespan in the yeast model of Niemann-Pick type C disease.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Esfingolipídeos/metabolismo , Proteínas de Transporte Vesicular/genética , Deleção de Genes , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
7.
Antioxid Redox Signal ; 38(1-3): 95-114, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35651273

RESUMO

Aims: Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder with no effective therapies. Mutant huntingtin protein (mHTT), the main HD proteinaceous hallmark, has been linked to reactive oxygen species (ROS) formation and mitochondrial dysfunction, among other pathological mechanisms. Importantly, Src-related kinases, c-Src and Fyn, are activated by ROS and regulate mitochondrial activity. However, c-Src/Fyn involvement in HD is largely unexplored. Thus, in this study, we aimed at exploring changes in Src/Fyn proteins in HD models and their role in defining altered mitochondrial function and dynamics and redox regulation. Results: We show, for the first time, that c-Src/Fyn phosphorylation/activation and proteins levels are decreased in several human and mouse HD models mainly due to autophagy degradation, concomitantly with mHtt-expressing cells showing enhanced TFEB-mediated autophagy induction and autophagy flux. c-Src/Fyn co-localization with mitochondria is also reduced. Importantly, the expression of constitutive active c-Src/Fyn to restore active Src kinase family (SKF) levels improves mitochondrial morphology and function, namely through improved mitochondrial transmembrane potential, mitochondrial basal respiration, and ATP production, but it did not affect mitophagy. In addition, constitutive active c-Src/Fyn expression diminishes the levels of reactive species in cells expressing mHTT. Innovation: This work supports a relevant role for c-Src/Fyn proteins in controlling mitochondrial function and redox regulation in HD, revealing a potential HD therapeutic target. Conclusion: c-Src/Fyn restoration in HD improves mitochondrial morphology and function, precluding the rise in oxidant species and cell death. Antioxid. Redox Signal. 38, 95-114.


Assuntos
Doença de Huntington , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/uso terapêutico , Doença de Huntington/tratamento farmacológico , Mitocôndrias/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteína Tirosina Quinase CSK/metabolismo
8.
Theranostics ; 13(11): 3707-3724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441602

RESUMO

Background: Extracellular vesicles (EVs) carry bioactive molecules associated with various biological processes, including miRNAs. In both Huntington's disease (HD) models and human samples, altered expression of miRNAs involved in synapse regulation was reported. Recently, the use of EV cargo to reverse phenotypic alterations in disease models with synaptopathy as the end result of the pathophysiological cascade has become an interesting possibility. Methods: Here, we assessed the contribution of EVs to GABAergic synaptic alterations using a human HD model and studied the miRNA content of isolated EVs. Results: After differentiating human induced pluripotent stem cells into electrophysiologically active striatal-like GABAergic neurons, we found that HD-derived neurons displayed reduced density of inhibitory synapse markers and GABA receptor-mediated ionotropic signaling. Treatment with EVs secreted by control (CTR) fibroblasts reversed the deficits in GABAergic synaptic transmission and increased the density of inhibitory synapses in HD-derived neuron cultures, while EVs from HD-derived fibroblasts had the opposite effects on CTR-derived neurons. Moreover, analysis of miRNAs from purified EVs identified a set of differentially expressed miRNAs between manifest HD, premanifest, and CTR lines with predicted synaptic targets. Conclusion: The EV-mediated reversal of the abnormal GABAergic phenotype in HD-derived neurons reinforces the potential role of EV-miRNAs on synapse regulation.


Assuntos
Vesículas Extracelulares , Doença de Huntington , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/metabolismo , Neurônios GABAérgicos/metabolismo , Vesículas Extracelulares/metabolismo
9.
J Extracell Biol ; 1(10): e65, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38939215

RESUMO

Mitochondrial and autophagy dysfunction are mechanisms proposed to be involved in the pathogenesis of several neurodegenerative diseases. Huntington's disease (HD) is a progressive neurodegenerative disorder associated with mutant Huntingtin-induced abnormalities in neuronal mitochondrial dynamics and quality control. Former studies suggest that the removal of defective mitochondria may be compromised in HD. Mitochondrial quality control (MQC) is a complex, well-orchestrated pathway that can be compromised through mitophagy dysregulation or impairment in the mitochondria-lysosomal axis. Another mitochondrial stress response is the generation of mitochondrial-derived vesicles that fuse with the endolysosomal system and form multivesicular bodies that are extruded from cells as extracellular vesicles (EVs). In this work, we aimed to study the presence of mitochondrial components in human EVs and the relation to the dysfunction of both mitochondria and the autophagy pathway. We comprehensively characterized the mitochondrial and autophagy alterations in premanifest and manifest HD carriers and performed a proteomic and genomic EVs profile. We observed that manifest HD patients exhibit mitochondrial and autophagy impairment associated with enhanced EVs release. Furthermore, we detected mitochondrial DNA and proteins in EVs released by HD cells and in neuronal-derived EVs including VDAC-1 and alpha and beta subunits of ATP synthase F1. HD-extracellular vesicles transport higher levels of mitochondrial genetic material in manifest HD patients, suggesting an alternative pathway for the secretion of reactive mitochondrial components. This study provides a novel framework connecting EVs enhanced release of mitochondrial components to mitochondrial and lysosomal dysfunction in HD.

10.
Front Mol Biosci ; 9: 882160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898309

RESUMO

Proteome-wide analyses suggest that most globular proteins contain at least one amyloidogenic region, whereas these aggregation-prone segments are thought to be underrepresented in intrinsically disordered proteins (IDPs). In recent work, we reported that intrinsically disordered regions (IDRs) indeed sustain a significant amyloid load in the form of cryptic amyloidogenic regions (CARs). CARs are widespread in IDRs, but they are necessarily exposed to solvent, and thus they should be more polar and have a milder aggregation potential than conventional amyloid regions protected inside globular proteins. CARs are connected with IDPs function and, in particular, with the establishment of protein-protein interactions through their IDRs. However, their presence also appears associated with pathologies like cancer or Alzheimer's disease. Given the relevance of CARs for both IDPs function and malfunction, we developed CARs-DB, a database containing precomputed predictions for all CARs present in the IDPs deposited in the DisProt database. This web tool allows for the fast and comprehensive exploration of previously unnoticed amyloidogenic regions embedded within IDRs sequences and might turn helpful in identifying disordered interacting regions. It contains >8,900 unique CARs identified in a total of 1711 IDRs. CARs-DB is freely available for users and can be accessed at http://carsdb.ppmclab.com. To validate CARs-DB, we demonstrate that two previously undescribed CARs selected from the database display full amyloidogenic potential. Overall, CARs-DB allows easy access to a previously unexplored amyloid sequence space.

11.
Front Cell Dev Biol ; 9: 635104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055771

RESUMO

Extracellular vesicles (EVs) are nano-sized membrane-enclosed particles released by cells that participate in intercellular communication through the transfer of biologic material. EVs include exosomes that are small vesicles that were initially associated with the disposal of cellular garbage; however, recent findings point toward a function as natural carriers of a wide variety of genetic material and proteins. Indeed, exosomes are vesicle mediators of intercellular communication and maintenance of cellular homeostasis. The role of exosomes in health and age-associated diseases is far from being understood, but recent evidence implicates exosomes as causative players in the spread of neurodegenerative diseases. Cells from the central nervous system (CNS) use exosomes as a strategy not only to eliminate membranes, toxic proteins, and RNA species but also to mediate short and long cell-to-cell communication as carriers of important messengers and signals. The accumulation of protein aggregates is a common pathological hallmark in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion diseases. Protein aggregates can be removed and delivered to degradation by the endo-lysosomal pathway or can be incorporated in multivesicular bodies (MVBs) that are further released to the extracellular space as exosomes. Because exosome transport damaged cellular material, this eventually contributes to the spread of pathological misfolded proteins within the brain, thus promoting the neurodegeneration process. In this review, we focus on the role of exosomes in CNS homeostasis, their possible contribution to the development of neurodegenerative diseases, the usefulness of exosome cargo as biomarkers of disease, and the potential benefits of plasma circulating CNS-derived exosomes.

12.
Biomedicines ; 9(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34829854

RESUMO

Macroautophagy, a quality control mechanism, is an evolutionarily conserved pathway of lysosomal degradation of protein aggregates, pathogens, and damaged organelles. As part of its vital homeostatic role, macroautophagy deregulation is associated with various human disorders, including neurodegenerative diseases. There are several lines of evidence that associate protein misfolding and mitochondrial dysfunction in the etiology of Alzheimer's, Parkinson's, and Huntington's diseases. Macroautophagy has been implicated in the degradation of different protein aggregates such as Aß, tau, alpha-synuclein (α-syn), and mutant huntingtin (mHtt) and in the clearance of dysfunctional mitochondria. Taking these into consideration, targeting autophagy might represent an effective therapeutic strategy to eliminate protein aggregates and to improve mitochondrial function in these disorders. The present review describes our current understanding on the role of macroautophagy in neurodegenerative disorders and focuses on possible strategies for its therapeutic modulation.

14.
Oxid Med Cell Longev ; 2015: 782504, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26000072

RESUMO

The health beneficial effects of dietary polyphenols have been attributed to their intrinsic antioxidant activity, which depends on the structure of the compound and number of hydroxyl groups. In this study, the protective effects of pyrogallol, phloroglucinol, and myricetin on the yeast Saccharomyces cerevisiae were investigated. Pyrogallol and myricetin, which have a pyrogallol structure in the B ring, increased H2O2 resistance associated with a reduction in intracellular oxidation and protein carbonylation, whereas phloroglucinol did not exert protective effects. The acquisition of oxidative stress resistance in cells pretreated with pyrogallol and myricetin was not associated with an induction of endogenous antioxidant defences as assessed by the analysis of superoxide dismutase and catalase activities. However, myricetin, which provided greater stress resistance, prevented H2O2-induced glutathione oxidation. Moreover, myricetin increased the chronological lifespan of yeast lacking the mitochondrial superoxide dismutase (Sod2p), which exhibited a premature aging phenotype and oxidative stress sensitivity. These findings show that the presence of hydroxyl groups in the ortho position of the B ring in pyrogallol and myricetin contributes to the antioxidant protection afforded by these compounds. In addition, myricetin may alleviate aging-induced oxidative stress, particularly when redox homeostasis is compromised due to downregulation of endogenous defences present in mitochondria.


Assuntos
Flavonoides/farmacologia , Floroglucinol/farmacologia , Pirogalol/farmacologia , Saccharomyces cerevisiae/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/toxicidade , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/metabolismo
15.
Cell Signal ; 27(9): 1840-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26079297

RESUMO

Mitochondria function as the powerhouses of the cell for energy conversion through the oxidative phosphorylation process. Accumulation of dysfunctional mitochondria promotes a bioenergetic crisis and cell death by apoptosis. Yeast cells lacking Isc1p, an orthologue of mammalian neutral sphingomyelinase type 2, exhibit mitochondrial dysfunction and shortened lifespan associated with the accumulation of specific ceramide species and activation of the PP2A-like protein phosphatase Sit4p and of the Hog1p kinase. Here, we show that isc1Δ cells display hyperactivation of mitophagy that is suppressed by downregulating Sit4p, Hog1p or the TORC1-Sch9p pathway. Notably, isc1Δ cells also have high levels of Dnm1p associated with unbalanced mitochondrial fission, leading to mitochondrial fragmentation, and DNM1 deletion suppressed the oxidative stress sensitivity and shortened lifespan of isc1Δ cells. Moreover, Isc1p and Dnm1p physically interact, suggesting a possible regulatory role for Isc1p in mitochondrial dynamics. Overall, our work demonstrates that Isc1p-mediated ceramide signalling regulates mitophagy and mitochondrial dynamics in yeast with impact on mitochondrial function and lifespan. Since ceramides have been implicated in ageing and diseases associated with mitochondrial dysfunction, our findings suggest that therapeutic strategies targeting ceramide signalling may improve mitochondrial function and human healthspan.


Assuntos
Ceramidas/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mitofagia/fisiologia , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Fosfolipases Tipo C/deficiência , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteína Fosfatase 2/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fosfolipases Tipo C/metabolismo
16.
Microb Cell ; 1(1): 21-36, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28357207

RESUMO

The target of rapamycin (TOR) is an important signaling pathway on a hierarchical network of interacting pathways regulating central biological processes, such as cell growth, stress response and aging. Several lines of evidence suggest a functional link between TOR signaling and sphingolipid metabolism. Here, we report that the TORC1-Sch9p pathway is activated in cells lacking Isc1p, the yeast orthologue of mammalian neutral sphingomyelinase 2. The deletion of TOR1 or SCH9 abolishes the premature aging, oxidative stress sensitivity and mitochondrial dysfunctions displayed by isc1Δ cells and this is correlated with the suppression of the autophagic flux defect exhibited by the mutant strain. The protective effect of TOR1 deletion, as opposed to that of SCH9 deletion, is not associated with the attenuation of Hog1p hyperphosphorylation, which was previously implicated in isc1Δ phenotypes. Our data support a model in which Isc1p regulates mitochondrial function and chronological lifespan in yeast through the TORC1-Sch9p pathway although Isc1p and TORC1 also seem to act through independent pathways, as isc1Δtor1Δ phenotypes are intermediate to those displayed by isc1Δ and tor1Δ cells. We also provide evidence that TORC1 downstream effectors, the type 2A protein phosphatase Sit4p and the AGC protein kinase Sch9p, integrate nutrient and stress signals from TORC1 with ceramide signaling derived from Isc1p to regulate mitochondrial function and lifespan in yeast. Overall, our results show that TORC1-Sch9p axis is deregulated in Isc1p-deficient cells, contributing to mitochondrial dysfunction, enhanced oxidative stress sensitivity and premature aging of isc1Δ cells.

17.
PLoS One ; 7(9): e45494, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029052

RESUMO

BACKGROUND: Quercetin is a naturally occurring flavonol with antioxidant, anticancer and anti-ageing properties. In this study we aimed to identify genes differentially expressed in yeast cells treated with quercetin and its role in oxidative stress protection. METHODS: A microarray analysis was performed to characterize changes in the transcriptome and the expression of selected genes was validated by RT-qPCR. Biological processes significantly affected were identified by using the FUNSPEC software and their relevance in H(2)O(2) resistance induced by quercetin was assessed. RESULTS: Genes associated with RNA metabolism and ribosome biogenesis were down regulated in cells treated with quercetin, whereas genes associated with carbohydrate metabolism, endocytosis and vacuolar proteolysis were up regulated. The induction of genes related to the metabolism of energy reserves, leading to the accumulation of the stress protectant disaccharide trehalose, and the activation of the cell wall integrity pathway play a key role in oxidative stress resistance induced by quercetin. CONCLUSIONS: These results suggest that quercetin may act as a modulator of cell signaling pathways related to carbohydrate metabolism and cell integrity to exert its protective effects against oxidative stress.


Assuntos
Antioxidantes/farmacologia , Parede Celular/metabolismo , Estresse Oxidativo , Quercetina/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Trealose/biossíntese , Actinas/metabolismo , Antioxidantes/química , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glicogênio/metabolismo , Glicólise/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Quercetina/química , Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA