Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Mech Methods ; 33(3): 215-221, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36016515

RESUMO

Food and feed contamination by nonlegislated mycotoxins beauvericin (BEA) and enniatin B (ENB) is a worldwide health concern in the present. The principal objective of this work is to assess some of the existing protocols to discover the single nucleotide variants (SNVs) in transcriptomic data obtained by RNA-seq from Jurkat cells in vitro samples individually exposed to BEA and ENB at three concentration levels (1.5, 3 and 5 µM). Moreover, previous transcriptomic results will be compared with new findings obtained using a different protocol. SNVs rs201003509 in BEA exposed cells and the rs36045790 in ENB were found in the differentially expressed genes in all doses compared to controls by means of the Genome Analysis Toolkit (GATK) Best Practices workflow. SNV-RNA-seq complementary pipeline did not show any SNV. Concerning gene expression, discrepant results were found for 1.5 µM BEA exposed cells compared with previous findings. However, 354 overlapped differentially expressed genes (DEGs) were identified in the three ENB concentrations used, with 147 matches with respect to the 245 DEGs found in the previous results. In conclusion, the two discovery SNVs protocols based on variant calling from RNA-seq used in this work displayed very different results and there were SNVs found manually not identified by any pipeline. Additionally, the new gene expression analysis reported comparable but non identical DEGs to the previous transcriptomic results obtained from these RNA-seq data.


Assuntos
Micotoxinas , Humanos , Micotoxinas/toxicidade , RNA-Seq , Transcriptoma , Perfilação da Expressão Gênica , Nucleotídeos
2.
Food Chem Toxicol ; 158: 112661, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34762978

RESUMO

The world requests for raw materials used in animal feed has been steadily rising in the last years driven by higher demands for livestock production. Mycotoxins are frequent toxic metabolites present in these raw materials. The exposure of farm animals to mycotoxins could result in undesirable residues in animal-derived food products. Thus, the potential ingestion of edible animal products (milk, meat and fish) contaminated with mycotoxins constitutes a public health concern, since they enter the food chain and may cause adverse effects upon human health. The present review summarizes the state-of-the-art on the occurrence of mycotoxins in feed, their metabolism and carry-over into animal source foodstuffs, focusing particularly on the last decade. Maximum levels (MLs) for various mycotoxins have been established for a number of raw feed materials and animal food products. Such values are sometimes exceeded, however. Aflatoxins (AFs), fumonisins (FBs), ochratoxin A (OTA), trichothecenes (TCs) and zearalenone (ZEN) are the most prevalent mycotoxins in animal feed, with aflatoxin M1 (AFM1) predominating in milk and dairy products, and OTA in meat by-products. The co-occurrence of mycotoxins in feed raw materials tends to be the rule rather than the exception, and the carry-over of mycotoxins from feed to animal source foods is more than proven.


Assuntos
Ração Animal/análise , Contaminação de Alimentos/análise , Carne/análise , Micotoxinas/análise , Animais , Contaminação de Alimentos/estatística & dados numéricos
3.
Food Funct ; 12(22): 11250-11261, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34708849

RESUMO

Microbial fermentation with lactic acid bacteria (LAB) is a natural food biopreservation method. Yellow mustard and milk whey are optimum substrates for LAB fermentation. The aim of the present study was to evaluate the bioaccessibility and bioavailability of bioactive compounds from yellow mustard flour and milk whey both with and without LAB fermentation. All extracts were subjected to a simulated digestion process. Total polyphenols, DL-3-phenyllactic acid (PLA), lactic acid, and the antioxidant activity were determined in the studied matrices before and after simulated digestion. Yellow mustard flour was significantly richer in total polyphenols, whereas significantly higher concentrations of PLA and lactic acid were observed in milk whey. Similar antioxidant activity was determined in both ingredients being in all cases strongly reduced after in vitro digestion. Higher bioaccessibility was found for polyphenols and PLA in milk whey. Transepithelial transport of total polyphenols was higher in yellow mustard flour compared to milk whey, reaching bioavailability values between 3-7% and 1-2%, respectively. PLA transepithelial transport was only significant in both fermented matrices with bioavailability around 4-6%. Transepithelial transport of lactic acid reached values of 31-34% (bioavailability ∼ 22%) and 15-78% (bioavailability ∼ 3%) in milk whey and yellow mustard flour, respectively. LAB fermentation showed beneficial effects on enriching extracts with PLA, lactic acid, and antioxidant activity, as well as increasing bioaccessibility of these acids in yellow mustard flour and total polyphenol bioavailability in milk whey. Results pointed to yellow mustard flour and milk whey as natural preservative ingredients used in the food industry, especially when fermented with LAB.


Assuntos
Antioxidantes , Lactobacillales/metabolismo , Leite/metabolismo , Mostardeira/química , Soro do Leite/metabolismo , Animais , Antioxidantes/química , Antioxidantes/farmacocinética , Disponibilidade Biológica , Células CACO-2 , Fermentação/fisiologia , Humanos , Lactatos/química , Lactatos/farmacocinética , Ácido Láctico/química , Ácido Láctico/farmacocinética
4.
Food Chem Toxicol ; 114: 246-259, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29476792

RESUMO

Contamination of animal feed with mycotoxins still occurs very often, despite great efforts in preventing it. Animal feeds are contaminated, at low levels, with several mycotoxins, particularly with those produced by Aspergillus and Fusarium genera (Aflatoxin B1, Ochratoxin A, Zearalenone, Deoxynivalenol and Fumonisina B1). In animal feed, to date, only Aflatoxin B1 is limited through EU regulation. Consequently, mycotoxins cause serious disorders and diseases in farm animals. In 2009, the European Union (386/2009/EC) approved the use of mycotoxin-detoxifying agents, as feed additives, to prevent mycotoxicoses in farm animals. The present review gives an overview of the problem of multi-mycotoxin contamination of feed, and aims to classify mycotoxin adsorbing agents (minerals, organic, and synthetic) for feed decontamination, focusing on adsorbents with the ability to bind to multiple mycotoxins, which should have a more effective application in farms but they are still little studied in scientific literature.


Assuntos
Ração Animal/análise , Descontaminação/métodos , Micotoxinas/química , Adsorção , Animais , Descontaminação/instrumentação , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Micotoxinas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA