Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360813

RESUMO

Proper cardiac function depends on the coordinated expression of multiple gene networks related to fuel utilization and mitochondrial ATP production, heart contraction, and ion transport. Key transcriptional regulators that regulate these gene networks have been identified. Among them, estrogen-related receptors (ERRs) have emerged as crucial modulators of cardiac function by regulating cellular metabolism and contraction machinery. Consistent with this role, lack of ERRα or ERRγ results in cardiac derangements that lead to functional maladaptation in response to increased workload. Interestingly, metabolic inflexibility associated with diabetic cardiomyopathy has been recently associated with increased mitochondrial fatty acid oxidation and expression of ERRγ, suggesting that sustained expression of this nuclear receptor could result in a cardiac pathogenic outcome. Here, we describe the generation of mice with cardiac-specific overexpression of ERRγ, which die at young ages due to heart failure. ERRγ transgenic mice show signs of dilated cardiomyopathy associated with cardiomyocyte hypertrophy, increased cell death, and fibrosis. Our results suggest that ERRγ could play a role in mediating cardiac pathogenic responses.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Estrogênio/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/patologia , Miócitos Cardíacos/patologia
2.
FASEB J ; 33(2): 2343-2358, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30277821

RESUMO

Calorie restriction (CR) exerts remarkable, beneficial effects on glucose homeostasis by mechanisms that are not fully understood. Given the relevance of white adipose tissue (WAT) in glucose homeostasis, we aimed at identifying the main cellular processes regulated in WAT in response to CR in a pathologic context of obesity. For this, a gene-expression profiling study was first conducted in mice fed ad libitum or subjected to 40% CR. We found that the gene network related to mitochondria was the most highly upregulated in WAT by CR. To study the role that increased mitochondrial biogenesis plays on glucose homeostasis following CR, we generated a mouse model devoid of the coactivators peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1)α and PGC-1ß specifically in adipocytes. Our results show that mice lacking PGC-1s in adipocytes are unable to increase mitochondrial biogenesis in WAT upon CR. Despite a blunted induction of mitochondrial biogenesis in response to calorie deprivation, mice lacking adipose PGC-1s still respond to CR by improving their glucose homeostasis. Our study demonstrates that PGC-1 coactivators are major regulators of CR-induced mitochondrial biogenesis in WAT and that increased mitochondrial biogenesis and oxidative function in adipose tissue are not required for the improvement of glucose homeostasis mediated by CR.-Pardo, R., Vilà, M., Cervela, L., de Marco, M., Gama-Pérez, P., González-Franquesa, A., Statuto, L., Vilallonga, R., Simó, R., Garcia-Roves, P. M., Villena, J. A. Calorie restriction prevents diet-induced insulin resistance independently of PGC-1-driven mitochondrial biogenesis in white adipose tissue.


Assuntos
Tecido Adiposo Branco/fisiopatologia , Restrição Calórica , Dieta/efeitos adversos , Intolerância à Glucose/prevenção & controle , Resistência à Insulina , Biogênese de Organelas , Fatores de Transcrição/fisiologia , Animais , Perfilação da Expressão Gênica , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Int J Mol Sci ; 20(11)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212580

RESUMO

Diabetic cardiomyopathy (DCM) has emerged as a relevant cause of heart failure among the diabetic population. Defined as a cardiac dysfunction that develops in diabetic patients independently of other major cardiovascular risks factors, such as high blood pressure and coronary artery disease, the underlying cause of DCMremains to be unveiled. Several pathogenic factors, including glucose and lipid toxicity, mitochondrial dysfunction, increased oxidative stress, sustained activation of the renin-angiotensin system (RAS) or altered calcium homeostasis, have been shown to contribute to the structural and functional alterations that characterize diabetic hearts. However, all these pathogenic mechanisms appear to stem from the metabolic inflexibility imposed by insulin resistance or lack of insulin signaling. This results in absolute reliance on fatty acids for the synthesis of ATP and impairment of glucose oxidation. Glucose is then rerouted to other metabolic pathways, with harmful effects on cardiomyocyte function. Here, we discuss the role that impaired cardiac insulin signaling in diabetic or insulin-resistant individuals plays in the onset and progression of DCM.


Assuntos
Cardiomiopatias Diabéticas/metabolismo , Insulina/metabolismo , Animais , Cardiomiopatias Diabéticas/genética , Humanos , Resistência à Insulina/fisiologia , Sistema Renina-Angiotensina/genética , Sistema Renina-Angiotensina/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
4.
J Cell Physiol ; 229(12): 2126-36, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24819348

RESUMO

Adenine nucleotide translocase (ANT) isoforms are mitochondrial proteins encoded by nuclear DNA that catalyze the exchange of ATP generated in the mitochondria for ADP produced in the cytosol. The aim of this study was to determine the role of the transcriptional coactivator PGC-1α (peroxisome proliferator-activated receptor-γ [PPAR-γ] coactivator 1α), a master regulator of mitochondrial oxidative metabolism, in the regulation of the expression of ANT isoform genes and to identify the transcription factors involved. We found that PGC-1α overexpression induced the expression of all ANT human and mouse isoforms but to different degrees. The transcription factor ERRα was involved in PGC-1α-induced expression of all human ANT isoforms (hANT1-3) in HeLa cells as well as in the regulation of mouse isoforms (mANT1-2) in C2C12 myotubes and 3T3-L1 adipocytes, even though ANT isoforms have important physiological differences and are regulated in a tissue-specific manner. In addition to ERRα, PPARδ and mTOR pathways were involved in the induction of mANT1-2 by PGC-1α in C2C12 myotubes, while PPARγ was involved in PGC-1α-regulation of mANT1-2 in 3T3-L1 adipocytes. Furthermore, the regulation of mANT genes by PGC-1α was also observed in vivo in knockout mouse models lacking PGC-1α. In summary, our results show that the regulation of genes encoding ANT isoforms is controlled by PGC-1α through different transcription factors depending on cell type.


Assuntos
Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Isoformas de Proteínas/biossíntese , Fatores de Transcrição/genética , Células 3T3-L1 , Animais , Regulação da Expressão Gênica , Células HeLa , Humanos , Camundongos , Translocases Mitocondriais de ADP e ATP/biossíntese , PPAR gama/biossíntese , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptores de Estrogênio/biossíntese , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
5.
Biochem Pharmacol ; 224: 116185, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561091

RESUMO

Cardiac ATP production is tightly regulated in order to satisfy the evolving energetic requirements imposed by different cues during health and pathological conditions. In order to sustain high ATP production rates, cardiac cells are endowed with a vast mitochondrial network that is essentially acquired during the perinatal period. Nevertheless, adult cardiac cells also adapt their mitochondrial mass and oxidative function to changes in energy demand and substrate availability by fine-tuning the pathways and mitochondrial machinery involved in energy production. The reliance of cardiac cells on mitochondrial metabolism makes them particularly sensitive to alterations in proper mitochondrial function, so that deficiency in energy production underlies or precipitates the development of heart diseases. Mitochondrial biogenesis is a complex process fundamentally controlled at the transcriptional level by a network of transcription factors and co-regulators, sometimes with partially redundant functions, that ensure adequate energy supply to the working heart. Novel uncovered regulators, such as RIP140, PERM1, MED1 or BRD4 have been recently shown to modulate or facilitate the transcriptional activity of the PGC-1s/ERRs/PPARs regulatory axis, allowing cardiomyocytes to adapt to a variety of physiological or pathological situations requiring different energy provision. In this review, we summarize the current knowledge on the mechanisms that regulate cardiac mitochondrial biogenesis, highlighting the recent discoveries of new transcriptional regulators and describing the experimental models that have provided solid evidence of the relevant contribution of these factors to cardiac function in health and disease.


Assuntos
Metabolismo Energético , Animais , Metabolismo Energético/fisiologia , Metabolismo Energético/genética , Humanos , Transcrição Gênica/fisiologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/genética , Cardiopatias/metabolismo , Cardiopatias/genética , Miocárdio/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Modelos Animais de Doenças , Miócitos Cardíacos/metabolismo
6.
Biochem J ; 443(3): 799-810, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22324440

RESUMO

Pref-1 (pre-adipocyte factor-1) is known to play a central role in regulating white adipocyte differentiation, but the role of Pref-1 in BAT (brown adipose tissue) has not been analysed. In the present study we found that Pref-1 expression is high in fetal BAT and declines progressively after birth. However, Pref-1-null mice showed unaltered fetal development of BAT, but exhibited signs of over-activation of BAT thermogenesis in the post-natal period. In C/EBP (CCAAT/enhancer-binding protein) α-null mice, a rodent model of impaired fetal BAT differentiation, Pref-1 was dramatically overexpressed, in association with reduced expression of the Ucp1 (uncoupling protein 1) gene, a BAT-specific marker of thermogenic differentiation. In brown adipocyte cell culture models, Pref-1 was mostly expressed in pre-adipocytes and declined with brown adipocyte differentiation. The transcription factor C/EBPδ activated the Pref-1 gene transcription in brown adipocytes, through binding to the proximal promoter region. Accordingly, siRNA (small interfering RNA)-induced C/EBPδ knockdown led to reduced Pref-1 gene expression. This effect is consistent with the observed overexpression of C/EBPδ in C/EBPα-null BAT and high expression of C/EBPδ in brown pre-adipocytes. Dexamethasone treatment of brown pre-adipocytes suppressed Pref-1 down-regulation occurring throughout the brown adipocyte differentiation process, increased the expression of C/EBPδ and strongly impaired expression of the thermogenic markers UCP1 and PGC-1α [PPARγ (peroxisome-proliferator-activated receptor γ) co-activator-α]. However, it did not alter normal fat accumulation or expression of non-BAT-specific genes. Collectively, these results specifically implicate Pref-1 in controlling the thermogenic gene expression program in BAT, and identify C/EBPδ as a novel transcriptional regulator of Pref-1 gene expression that may be related to the specific role of glucocorticoids in BAT differentiation.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/fisiologia , Diferenciação Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Tecido Adiposo Marrom/citologia , Animais , Sequência de Bases , Northern Blotting , Proteína delta de Ligação ao Facilitador CCAAT/genética , Proteínas de Ligação ao Cálcio , Células Cultivadas , Imunoprecipitação da Cromatina , Primers do DNA , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real
7.
Autophagy ; 19(3): 904-925, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35947488

RESUMO

Brown adipose tissue (BAT) thermogenesis affects energy balance, and thereby it has the potential to induce weight loss and to prevent obesity. Here, we document a macroautophagic/autophagic-dependent mechanism of peroxisome proliferator-activated receptor gamma (PPARG) activity regulation that induces brown adipose differentiation and thermogenesis and that is mediated by TP53INP2. Disruption of TP53INP2-dependent autophagy reduced brown adipogenesis in cultured cells. In vivo specific-tp53inp2 ablation in brown precursor cells or in adult mice decreased the expression of thermogenic and mature adipocyte genes in BAT. As a result, TP53INP2-deficient mice had reduced UCP1 content in BAT and impaired maximal thermogenic capacity, leading to lipid accumulation and to positive energy balance. Mechanistically, TP53INP2 stimulates PPARG activity and adipogenesis in brown adipose cells by promoting the autophagic degradation of NCOR1, a PPARG co-repressor. Moreover, the modulation of TP53INP2 expression in BAT and in human brown adipocytes suggests that this protein increases PPARG activity during metabolic activation of brown fat. In all, we have identified a novel molecular explanation for the contribution of autophagy to BAT energy metabolism that could facilitate the design of therapeutic strategies against obesity and its metabolic complications.


Assuntos
Tecido Adiposo Marrom , PPAR gama , Camundongos , Humanos , Animais , Tecido Adiposo Marrom/metabolismo , PPAR gama/metabolismo , Autofagia , Obesidade/metabolismo , Termogênese/genética , Proteínas Nucleares/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo
8.
J Biol Chem ; 286(19): 16958-66, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21454513

RESUMO

Sirt3 (silent mating type information regulation 2, homolog 3), a member of the sirtuin family of protein deacetylases with multiple actions on metabolism and gene expression is expressed in association with brown adipocyte differentiation. Using Sirt3-null brown adipocytes, we determined that Sirt3 is required for an appropriate responsiveness of cells to noradrenergic, cAMP-mediated activation of the expression of brown adipose tissue thermogenic genes. The transcriptional coactivator Pgc-1α (peroxisome proliferator-activated receptor-γ coactivator-1α) induced Sirt3 gene expression in white adipocytes and embryonic fibroblasts as part of its overall induction of a brown adipose tissue-specific pattern of gene expression. In cells lacking Sirt3, Pgc-1α failed to fully induce the expression of brown fat-specific thermogenic genes. Pgc-1α activates Sirt3 gene transcription through coactivation of the orphan nuclear receptor Err (estrogen-related receptor)-α, which bound the proximal Sirt3 gene promoter region. Errα knockdown assays indicated that Errα is required for full induction of Sirt3 gene expression in response to Pgc-1α. The present results indicate that Pgc-1α controls Sirt3 gene expression and this action is an essential component of the overall mechanisms by which Pgc-1α induces the full acquisition of a brown adipocyte differentiated phenotype.


Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação da Expressão Gênica , Sirtuína 3/metabolismo , Fatores de Transcrição/metabolismo , Animais , Núcleo Celular/metabolismo , Clonagem Molecular , AMP Cíclico/metabolismo , Fibroblastos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fenótipo , RNA Mensageiro/metabolismo , Receptores de Estrogênio/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
9.
Dis Model Mech ; 15(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35466996

RESUMO

Impaired thermogenesis observed in mice with whole-body ablation of peroxisome proliferator-activated receptor-γ coactivator-1ß (PGC-1ß; officially known as PPARGC1B) may result from impaired brown fat (brown adipose tissue; BAT) function, but other mechanism(s) could be involved. Here, using adipose-specific PGC-1ß knockout mice (PGC-1ß-AT-KO mice) we aimed to learn whether specific PGC-1ß ablation in adipocytes is sufficient to drive cold sensitivity. Indeed, we found that warm-adapted (30°C) mutant mice were relatively sensitive to acute cold exposure (6°C). When these mice were subjected to cold exposure for 7 days (7-day-CE), adrenergic stimulation of their metabolism was impaired, despite similar levels of thermogenic uncoupling protein 1 in BAT in PGC-1ß-AT-KO and wild-type mice. Gene expression in BAT of mutant mice suggested a compensatory increase in lipid metabolism to counteract the thermogenic defect. Interestingly, a reduced number of contacts between mitochondria and lipid droplets associated with low levels of L-form of optic atrophy 1 was found in BAT of PGC-1ß-AT-KO mice. These genotypic differences were observed in warm-adapted mutant mice, but they were partially masked by 7-day-CE. Collectively, our results suggest a role for PGC-1ß in controlling BAT lipid metabolism and thermogenesis. This article has an associated First Person interview with the first author of the paper.


Assuntos
Tecido Adiposo Marrom , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Adipócitos , Animais , Humanos , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas de Ligação a RNA/metabolismo , Termogênese/genética
10.
Nat Metab ; 4(3): 327-343, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35288722

RESUMO

Reciprocal interactions between endothelial cells (ECs) and adipocytes are fundamental to maintain white adipose tissue (WAT) homeostasis, as illustrated by the activation of angiogenesis upon WAT expansion, a process that is impaired in obesity. However, the molecular mechanisms underlying the crosstalk between ECs and adipocytes remain poorly understood. Here, we show that local production of polyamines in ECs stimulates adipocyte lipolysis and regulates WAT homeostasis in mice. We promote enhanced cell-autonomous angiogenesis by deleting Pten in the murine endothelium. Endothelial Pten loss leads to a WAT-selective phenotype, characterized by reduced body weight and adiposity in pathophysiological conditions. This phenotype stems from enhanced fatty acid ß-oxidation in ECs concomitant with a paracrine lipolytic action on adipocytes, accounting for reduced adiposity. Combined analysis of murine models, isolated ECs and human specimens reveals that WAT lipolysis is mediated by mTORC1-dependent production of polyamines by ECs. Our results indicate that angiocrine metabolic signals are important for WAT homeostasis and organismal metabolism.


Assuntos
Adiposidade , Células Endoteliais , Animais , Células Endoteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Poliaminas
11.
Mol Nutr Food Res ; 65(9): e2000672, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33686759

RESUMO

INTRODUCTION: Calorie restriction (CR) exerts multiple effects on health, including the amelioration of systemic insulin resistance. Although the precise mechanisms by which CR improves glucose homeostasis remain poorly defined, SIRT1 has been suggested to act as a central mediator of the cellular responses to CR. Here, we aim at identifying the mechanisms by which CR and SIRT1 modulate white adipose tissue (WAT) function, a key tissue in the control of glucose homeostasis. MATERIAL AND METHODS: A gene expression profiling study using DNA microarrays is conducted in WAT of control and SIRT1 transgenic mice fed ad libitum (AL) and mice subjected to 40% CR. RESULTS: Gene expression profiling reveals a relatively low degree of overlap between the transcriptional programs regulated by SIRT1 and CR. Gene networks related to extracellular matrix appear commonly downregulated by SIRT1/CR, whereas mitochondrial biogenesis is enhanced exclusively by CR. Moreover, WAT inflammation is reduced by CR and SIRT1, although their anti-inflammatory effects appeared to be achieved by regulating different gene networks related to the immune system. CONCLUDING REMARKS: In WAT, SIRT1 does not mediate most of the effects of CR on gene expression. Still, gene networks differentially regulated by SIRT1 and CR converge to reduce WAT inflammation.


Assuntos
Tecido Adiposo Branco/metabolismo , Restrição Calórica , Sirtuína 1/fisiologia , Transcriptoma , Animais , Proteínas da Matriz Extracelular/metabolismo , Glucose/metabolismo , Inflamação/prevenção & controle , Masculino , Camundongos
12.
Mol Nutr Food Res ; 65(11): e2100111, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33870623

RESUMO

SCOPE: Interventions that boost NAD+ availability are of potential therapeutic interest for obesity treatment. The potential of nicotinamide (NAM), the amide form of vitamin B3 and a physiological precursor of nicotinamide adenine dinucleotide (NAD)+ , in preventing weight gain has not previously been studied in vivo. Other NAD+ precursors have been shown to decrease weight gain; however, their impact on adipose tissue is not addressed. METHODS AND RESULTS: Two doses of NAM (high dose: 1% and low dose: 0.25%) are given by drinking water to C57BL/6J male mice, starting at the same time as the high-fat diet feeding. NAM supplementation protects against diet-induced obesity by augmenting global body energy expenditure in C57BL/6J male mice. The manipulation markedly alters adipose morphology and metabolism, particularly in inguinal (i) white adipose tissue (iWAT). An increased number of brown and beige adipocyte clusters, protein abundance of uncoupling protein 1 (UCP1), mitochondrial activity, adipose NAD+ , and phosphorylated AMP-activated protein kinase (P-AMPK) levels are observed in the iWAT of treated mice. Notably, a significant improvement in hepatic steatosis, inflammation, and glucose tolerance is also observed in NAM high-dose treated mice. CONCLUSION: NAM influences whole-body energy expenditure by driving changes in the adipose phenotype. Thus, NAM is an attractive potential treatment for preventing obesity and associated complications.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Niacinamida/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos Bege/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos Endogâmicos C57BL , Niacinamida/administração & dosagem , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/etiologia , Obesidade/prevenção & controle , Aumento de Peso/efeitos dos fármacos
13.
J Nutr Biochem ; 85: 108480, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32795655

RESUMO

Obese subjects of all ages and sex have reduced plasma SHBG levels. Whether these low plasma SHBG levels play a role in obesity development is unknown. In the present work we wanted to explore if SHBG overexpression could prevent obesity development induced by high fat diet (HFD). To do so, we fed humanized SHBG transgenic male mice and their wild-type littermates with control diet (CD) or HFD over the course of 8 weeks. The results showed that SHBG overexpression protected against body weight gain and fat accumulation induced by HFD. In addition, SHBG overexpression also abrogated the increase in insulin, leptin and resistin levels, as well as the reduction in adiponectin, induced by HFD. Mechanistically, the SHBG protection against HFD-induced obesity was achieved by stimulating lipolysis in white adipose tissue. Furthermore, we have demonstrated the SHBG cell-autonomous effect using human primary visceral adipocytes. Taking together, our results demonstrate that SHBG overexpression protects against diet-induced obesity and improves the metabolic profile of male mice fed a HFD diet.


Assuntos
Obesidade/genética , Globulina de Ligação a Hormônio Sexual/genética , Regulação para Cima , Animais , Linhagem Celular , Dieta Hiperlipídica , Humanos , Lipólise , Masculino , Camundongos Transgênicos , Obesidade/etiologia , Obesidade/metabolismo , Fatores de Proteção , Globulina de Ligação a Hormônio Sexual/metabolismo
14.
Metabolites ; 10(4)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235559

RESUMO

After myocardial ischemia-reperfusion, fatty acid oxidation shows fast recovery while glucose oxidation rates remain depressed. A metabolic shift aimed at increasing glucose oxidation has shown to be beneficial in models of myocardial ischemia-reperfusion. However, strategies aimed at increasing glucose consumption in the clinic have provided mixed results and have not yet reached routine clinical practice. A better understanding of the mechanisms underlying the protection afforded by increased glucose oxidation may facilitate the transfer to the clinic. The purpose of this study was to evaluate if the modulation of reactive oxygen species (ROS) was involved in the protection afforded by increased glucose oxidation. Firstly, we characterized an H9C2 cellular model in which the use of glucose or galactose as substrates can modulate glycolysis and oxidative phosphorylation pathways. In this model, there were no differences in morphology, cell number, or ATP and PCr levels. However, galactose-grown cells consumed more oxygen and had an increased Krebs cycle turnover, while cells grown in glucose had increased aerobic glycolysis rate as demonstrated by higher lactate and alanine production. Increased aerobic glycolysis was associated with reduced ROS levels and protected the cells against simulated ischemia-reperfusion injury. Furthermore, ROS scavenger N-acetyl cysteine (NAC) was able to reduce the amount of ROS and to prevent cell death. Lastly, cells grown in galactose showed higher activation of mTOR/Akt signaling pathways. In conclusion, our results provide evidence indicating that metabolic shift towards increased glycolysis reduces mitochondrial ROS production and prevents cell death during ischemia-reperfusion injury.

15.
J Clin Endocrinol Metab ; 105(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606738

RESUMO

CONTEXT: Oncostatin M (OSM) plays a key role in inflammation, but its regulation and function during obesity is not fully understood. OBJECTIVE: The aim of this study was to evaluate the relationship of OSM with the inflammatory state that leads to impaired glucose homeostasis in obesity. We also assessed whether OSM immunoneutralization could revert metabolic disturbances caused by a high-fat diet (HFD) in mice. DESIGN: 28 patients with severe obesity were included and stratified into two groups: (1) glucose levels <100 mg/dL and (2) glucose levels >100 mg/dL. White adipose tissue was obtained to examine OSM gene expression. Human adipocytes were used to evaluate the effect of OSM in the inflammatory response, and HFD-fed C57BL/6J mice were injected with anti-OSM antibody to evaluate its effects. RESULTS: OSM expression was elevated in subcutaneous and visceral fat from patients with obesity and hyperglycemia, and correlated with Glut4 mRNA levels, serum insulin, homeostatic model assessment of insulin resistance, and inflammatory markers. OSM inhibited adipogenesis and induced inflammation in human adipocytes. Finally, OSM receptor knockout mice had increased Glut4 mRNA levels in adipose tissue, and OSM immunoneutralization resulted in a reduction of glucose levels and Ccl2 expression in adipose tissue from HFD-fed mice. CONCLUSIONS: OSM contributes to the inflammatory state during obesity and may be involved in the development of insulin resistance.


Assuntos
Glucose/metabolismo , Homeostase , Obesidade/metabolismo , Oncostatina M/fisiologia , Adipócitos/citologia , Adulto , Animais , Feminino , Transportador de Glucose Tipo 4/genética , Humanos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptores de Oncostatina M/fisiologia
16.
Trends Endocrinol Metab ; 19(8): 269-76, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18778951

RESUMO

Estrogen receptor related receptor (ERR)alpha was one of the first identified (1988) orphan nuclear receptors. Many of the orphan receptors identified after ERRalpha were deorphanized in a timely manner and appreciated as key transcriptional regulators of metabolic pathways. ERRalpha, however, remains an orphan. Nevertheless, recent studies have defined regulatory mechanisms and transcriptional targets of ERRalpha, allowing this receptor to join ranks with other nuclear receptors that control metabolism. Notably, mice lacking ERRalpha show defects when challenged with stressors that require a 'shift of gears' in energy metabolism, such as exposure to cold, cardiac overload or infection. These findings establish the importance of ERRalpha for adaptive energy metabolism, and suggest that strategies targeting ERRalpha may be useful in fighting metabolic diseases.


Assuntos
Metabolismo Energético/genética , Redes e Vias Metabólicas/genética , Receptores de Estrogênio/fisiologia , Animais , Metabolismo Energético/fisiologia , Humanos , Redes e Vias Metabólicas/fisiologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Família Multigênica , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptores de Estrogênio/genética , Transativadores/fisiologia , Fatores de Transcrição , Receptor ERRalfa Relacionado ao Estrogênio
17.
iScience ; 15: 79-94, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31039455

RESUMO

Osteocytes, the most abundant of bone cells, differentiate while they remain buried within the bone matrix. This encasement limits their access to nutrients and likely affects their differentiation, a process that remains poorly defined. Here, we show that restriction in glucose supply promotes the osteocyte transcriptional program while also being associated with increased mitochondrial DNA levels. Glucose deprivation triggered the activation of the AMPK/PGC-1 pathway. AMPK and SIRT1 activators or PGC-1α overexpression are sufficient to enhance osteocyte gene expression in IDG-SW3 cells, murine primary osteoblasts, osteocytes, and organotypic/ex vivo bone cultures. Conversely, osteoblasts and osteocytes deficient in Ppargc1a and b were refractory to the effects of glucose restriction. Finally, conditional ablation of both genes in osteoblasts and osteocytes generate osteopenia and reduce osteocytic gene expression in mice. Altogether, we uncovered a role for PGC-1 in the regulation of osteocyte gene expression.

18.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1298-1312, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30690068

RESUMO

In humans, low brown adipose tissue (BAT) mass and activity have been associated with increased adiposity and fasting glucose levels, suggesting that defective BAT-dependent thermogenesis could contribute to the development of obesity and/or type 2 diabetes. The thermogenic function of BAT relies on a vast network of mitochondria exclusively equipped with UCP1. Mitochondrial biogenesis is exquisitely regulated by a well-defined network of transcription factors that coordinate the expression of nuclear genes required for the formation of functional mitochondria. However, less is known about the mitochondrial factors that control the expression of the genes encoded by the mitochondrial genome. Here, we have studied the role of mitochondrial transcription termination factor-4 (MTERF4) in BAT by using a new mouse model devoid of MTERF4 specifically in adipocytes (MTERF4-FAT-KO mice). Lack of MTERF4 in BAT leads to reduced OxPhos mitochondrial protein levels and impaired assembly of OxPhos complexes I, III and IV due to deficient translation of mtDNA-encoded proteins. As a result, brown adipocytes lacking MTERF4 exhibit impaired respiratory capacity. MTERF4-FAT-KO mice show a blunted thermogenic response and are unable to maintain body temperature when exposed to cold. Despite impaired BAT function, MTERF4-FAT-KO mice do not develop obesity or insulin resistance. Still, MTERF4-FAT-KO mice became resistant to the insulin-sensitizing effects of ß3-specific adrenergic receptor agonists. Our results demonstrate that MTERF4 regulates mitochondrial protein translation and is essential for proper BAT thermogenic activity. Our study also supports the notion that pharmacological activation of BAT is a plausible therapeutic target for the treatment of insulin resistance.


Assuntos
Tecido Adiposo Marrom/metabolismo , Glucose/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Termogênese/genética , Fatores de Transcrição/genética , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/patologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Temperatura Baixa , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica , Homeostase/genética , Humanos , Insulina/metabolismo , Insulina/farmacologia , Resistência à Insulina , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Proteínas Mitocondriais/deficiência , Biogênese de Organelas , Fosforilação Oxidativa/efeitos dos fármacos , Transdução de Sinais , Fatores de Transcrição/deficiência
19.
J Clin Invest ; 111(4): 453-61, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12588883

RESUMO

Preadipocyte factor-1 (Pref-1) is a transmembrane protein highly expressed in preadipocytes. Pref-1 expression is, however, completely abolished in adipocytes. The extracellular domain of Pref-1 undergoes two proteolytic cleavage events that generate 50 and 25 kDa soluble products. To understand the function of Pref-1, we generated transgenic mice that express the full ectodomain corresponding to the large cleavage product of Pref-1 fused to human immunoglobulin-gamma constant region. Mice expressing the Pref-1/hFc transgene in adipose tissue, driven by the adipocyte fatty acid-binding protein (aP2, also known as aFABP) promoter, showed a substantial decrease in total fat pad weight. Moreover, adipose tissue from transgenic mice showed reduced expression of adipocyte markers and adipocyte-secreted factors, including leptin and adiponectin, whereas the preadipocyte marker Pref-1 was increased. Pref-1 transgenic mice with a substantial, but not complete, loss of adipose tissue exhibited hypertriglyceridemia, impaired glucose tolerance, and decreased insulin sensitivity. Mice expressing the Pref-1/hFc transgene exclusively in liver under the control of the albumin promoter also showed a decrease in adipose mass and adipocyte marker expression, suggesting an endocrine mode of action of Pref-1. These findings demonstrate the inhibition of adipogenesis by Pref-1 in vivo and the resulting impairment of adipocyte function that leads to the development of metabolic abnormalities.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Intolerância à Glucose/etiologia , Proteínas de Membrana/metabolismo , Proteínas Repressoras/metabolismo , Animais , Sequência de Bases , Osso e Ossos/anormalidades , Osso e Ossos/embriologia , Proteínas de Ligação ao Cálcio , Contagem de Células , Diferenciação Celular , Tamanho Celular , DNA Complementar/genética , Feminino , Expressão Gênica , Intolerância à Glucose/metabolismo , Transtornos do Crescimento/embriologia , Transtornos do Crescimento/genética , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Solubilidade
20.
Mol Cell Biol ; 22(15): 5585-92, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12101250

RESUMO

Preadipocyte factor 1 (Pref-1/Dlk1) inhibits in vitro adipocyte differentiation and has been recently reported to be a paternally expressed imprinted gene at human chromosome 14q32. Studies on human chromosome 14 deletions and maternal uniparental disomy (mUPD) 14 suggest that misexpression of a yet-to-be-identified imprinted gene or genes present on chromosome 14 causes congenital disorders. We generated Pref-1 knockout mice to assess the role of Pref-1 in growth and in vivo adipogenesis and to determine the contribution of Pref-1 in mUPD. Pref-1-null mice display growth retardation, obesity, blepharophimosis, skeletal malformation, and increased serum lipid metabolites. Furthermore, the phenotypes observed in Pref-1-null mice are present in heterozygotes that harbor a paternally inherited, but not in those with a maternally inherited pref-1-null allele. Our results demonstrate that Pref-1 is indeed paternally expressed and is important for normal development and for homeostasis of adipose tissue mass. We also suggest that Pref-1 is responsible for most of the symptoms observed in mouse mUPD12 and human mUPD14. Pref-1-null mice may be a model for obesity and other pathologies of human mUPD14.


Assuntos
Anormalidades Múltiplas/genética , Transtornos do Crescimento/genética , Proteínas de Membrana/deficiência , Obesidade/genética , Dissomia Uniparental/genética , Anormalidades Múltiplas/patologia , Alelos , Animais , Blefarofimose/genética , Peso Corporal , Proteínas de Ligação ao Cálcio , Modelos Animais de Doenças , Pai , Impressão Genômica , Transtornos do Crescimento/patologia , Heterozigoto , Peptídeos e Proteínas de Sinalização Intercelular , Metabolismo dos Lipídeos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mães , Obesidade/patologia , Fenótipo , Proteínas Repressoras/genética , Costelas/anormalidades , Dissomia Uniparental/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA