Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Epidemiol Infect ; 151: e130, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37439254

RESUMO

Salmonella spp. is a common zoonotic pathogen, causing gastrointestinal infections in people. Pigs and pig meat are a major source of infection. Although farm biosecurity is believed to be important for controlling Salmonella transmission, robust evidence is lacking on which measures are most effective. This study enrolled 250 pig farms across nine European countries. From each farm, 20 pooled faecal samples (or similar information) were collected and analysed for Salmonella presence. Based on the proportion of positive results, farms were categorised as at higher or lower Salmonella risk, and associations with variables from a comprehensive questionnaire investigated. Multivariable analysis indicated that farms were less likely to be in the higher-risk category if they had '<400 sows'; used rodent baits close to pig enclosures; isolated stay-behind (sick) pigs; did not answer that the hygiene lock/ anteroom was easy to clean; did not have a full perimeter fence; did apply downtime of at least 3 days between farrowing batches; and had fully slatted flooring in all fattener buildings. A principal components analysis assessed the sources of variation between farms, and correlation between variables. The study results suggest simple control measures that could be prioritised on European pig farms to control Salmonella.


Assuntos
Salmonelose Animal , Doenças dos Suínos , Suínos , Animais , Feminino , Fazendas , Biosseguridade , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Salmonella , Europa (Continente)/epidemiologia , Salmonelose Animal/epidemiologia , Salmonelose Animal/prevenção & controle , Criação de Animais Domésticos/métodos
2.
BMC Vet Res ; 16(1): 173, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32487155

RESUMO

BACKGROUND: Culling is a major cost for dairy farms but also an essential part in managing herd productivity. This study aimed to identify the culling rates of Estonian dairy cows, identify the farmers' stated reasons and risk factors for culling. This observational study used registry data of all cows from herds with ≥20 cow-years in 2013-2015. Cow lactation-level analyses included data of 86,373 primiparous cows from 409 herds and 177,561 lactations of 109,295 multiparous cows from 410 herds. Weibull proportional hazard regression models were used to identify risk factors for culling due to slaughter or death. RESULTS: The overall culling rate of Estonian dairy cows was 26.24 (95% CI 26.02; 26.46) per 100 cow-years. The most common reasons farmers stated for culling were feet/claw disorders (26.4%), udder disorders (22.6%), metabolic and digestive disorders (18.1%) and fertility problems (12.5%). Animal-level risk factors for culling were Holstein breed, older parity, lower milk yield breeding value, older age at first calving, longer previous calving interval, having assisted calving, stillbirth and birth of twins/triplets. Lower milk yield, somatic cell count over 200,000 cells/ml and fat/protein ratio over 1.5 at first test-milking after calving were associated with greater culling hazard during the lactation. Cows from larger herds, herds with decreasing size and higher milk yields had a higher culling probability. CONCLUSIONS: This study emphasises the need for improved management of hoof health and prevention of mastitis and metabolic diseases. It is essential to ensure easy calving and good health of cows around calving in order to lower the culling hazard.


Assuntos
Criação de Animais Domésticos/métodos , Doenças dos Bovinos/mortalidade , Indústria de Laticínios/métodos , Animais , Bovinos , Indústria de Laticínios/estatística & dados numéricos , Estônia/epidemiologia , Feminino , Lactação , Longevidade , Leite/estatística & dados numéricos , Paridade , Gravidez , Fatores de Risco
3.
Pathogens ; 13(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38392877

RESUMO

African swine fever (ASF) has posed a significant threat to Ukrainian pig farming since its identification in 2012. In this study, recognising the pivotal role of pigkeepers in disease control, we conducted ten focus groups involving 52 smallholders across eight regions in Ukraine. Using participatory methods, we revealed their awareness of ASF signs, transmission routes, preventive measures, and the perceptions of stakeholders involved in ASF control. Furthermore, we identified the smallholders' acceptance of eradication and restriction measures, the perceived impact of zoning consequences, and their main sources of ASF information. Smallholders identified fever and skin haemorrhage as the most indicative signs of ASF and highlighted rodents as a primary transmission concern. Disinfection was seen as the most effective measure for preventing the introduction of ASF. Pigkeepers who perceived their stakeholder role in ASF control showed more trust in themselves and veterinarians than in central veterinary authorities. Farm-level ASF eradication measures were generally accepted; however, culling within the protection zone was least accepted, with economic losses listed as the most impactful consequence for pigkeepers. For ASF information, pigkeepers favour web searches and veterinarians, as well as traditional media and word-of-mouth news. This study provides valuable insights into refining the ASF communication strategies in Ukraine.

4.
Prev Vet Med ; 222: 106081, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061266

RESUMO

The present study analysed the importance of individual variables and different thematic blocks of production areas, management, and herd infectious disease status on cow persistence, characterised by herd on-farm mortality rate (MR), culling rate (CR), and mean age of culled cows (MAofCC) applying multiblock partial least squares (mbPLS) analysis. This study included 120 free-stall dairy herds with ≥ 100 cows. Data on the previous year's predominant cow housing system and management practices were collected, and on-farm measurements and cow scoring were performed. Bulk tank milk (BTM) and heifer blood samples (10 samples per herd) were collected and analysed for antibodies against the selected pathogens. In total, 172 variables were aggregated into 14 thematic blocks. The annual CR, MR, and MAofCC values were calculated for each herd. Thematic blocks with significant impact on cow persistence (included herd MR, CR and MAofCC) were 'infectious diseases' (block importance index out of all blocks = 13.6%, 95% CI 10.3; 20.5), 'fertility management' (16.3%, 95% CI 6.8; 26.9), 'lactating cow management' (11.5%, 95% CI 6.4; 17.8), 'milking' (11.3%, 95% CI 3.2; 17.1), 'herd characteristics' (10.1%, 95% CI 6.3; 14.2), 'close-up period management' (9.7%, 95% CI 2.7; 15.7), 'calving management' (7.9%, 95% CI 3.1; 11.4) and 'disease management' (7.3%, 95% CI 0.2; 12.0). Variable categories with the highest importance in explaining composite outcome including herd MR, CR and MAofCC were rear-end and udder lesions in ≥ 20% of the cows, BTM and heifers seropositive to bovine respiratory syncytial virus, vaccination against bovine herpesvirus 1, twice daily milking and herd location in Northwest region. Larger herd size, higher levels of milk yield, and rearing predominantly Holstein breed cattle were herd factors associated with poorer cow persistency. Grazing cows and having semi-insulated barns were associated with lower CR and MR, respectively. Heat detection and farm pregnancy testing strategies were significant factors in the fertility block. Using disposable dry papers for teat cleaning and not using any wet teat-cleaning tools were risk factors for high MR. A robotic milking system was protective for increased herd MR and CR. A high pre-calving body condition score and poor rear body cleanliness of ≥ 30% of cows were associated with inferior herd persistency outcomes. Calving in group pens with deep litter bedding was associated with a lower CR. Multiblock PLS model is innovative tool that helped to identify most influential farming areas but also single risk factors associated with cow persistency described by multiple parameters.


Assuntos
Doenças dos Bovinos , Lactação , Gravidez , Bovinos , Animais , Feminino , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Indústria de Laticínios , Leite , Fatores de Risco
5.
Front Vet Sci ; 11: 1305643, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545558

RESUMO

The wild boar (Sus scrofa) is a social animal species native to Eurasia. During the last decade, the wild boar population in Estonia has been severely affected by the African swine fever virus (ASFV), which has also affected domestic pig farming. The potential transmission routes of ASFV remain unclear and are currently under intensive investigation. This pilot study aimed to clarify the frequency and characteristics of contacts between living wild boars and the carcasses of their conspecifics, which could play a role in the transmission of ASFV. Wild animals' contact and scavenging behavior on wild boar carcasses were studied using trail cameras in an experimental setting on Hiiumaa, Western Estonia. Four legally hunted carcasses were used in the present study. This study aimed to determine whether intraspecies scavenging occurs in wild boars. The persistence of ASFV DNA in soil contaminated with infected wild boar carcasses was investigated separately. Among the 17 identified wildlife species that visited wild boar carcasses, the common raven (Corvus corax) was the most frequent one (37.26%), followed by raccoon dogs (Nyctereutes procyonoides; 4.25%), carcass conspecific/wild boars (3.16%), and red foxes (Vulpes vulpes; 2.14%). Regarding the direct contact with the carcass, the same species ranking was detected: common raven (74.95%), raccoon dogs (9.94%), wild boars (4.21%), and red foxes (4.21%). No clear signs of cannibalism were noted among the wild boars, although brief physical contact with the carcasses was evident. The persistence of ASFV DNA in soil contaminated by infected wild boar carcasses was investigated separately. This study revealed that ASFV DNA from infected carcasses could be detected in forest soil for prolonged periods, even after removing the carcasses. Hence, the carcasses of infected wild boars may play an important role in spreading the African swine fever virus in wild boar populations; thus, prompt removal and disinfection of the soil could be considered necessary to limit the spread of the infection.

6.
Viruses ; 16(3)2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543702

RESUMO

In the event of an outbreak of African swine fever (ASF) in pig farms, the European Union (EU) legislation requires the establishment of a restricted zone, consisting of a protection zone with a radius of at least 3 km and a surveillance zone with a radius of at least 10 km around the outbreak. The main purpose of the restricted zone is to stop the spread of the disease by detecting further outbreaks. We evaluated the effectiveness and necessity of the restricted zone in the Baltic States by looking at how many secondary outbreaks were detected inside and outside the protection and surveillance zones and by what means. Secondary outbreaks are outbreaks with an epidemiological link to a primary outbreak while a primary outbreak is an outbreak that is not epidemiologically linked to any previous outbreak. From 2014 to 2023, a total of 272 outbreaks in domestic pigs were confirmed, where 263 (96.7%) were primary outbreaks and 9 (3.3%) were secondary outbreaks. Eight of the secondary outbreaks were detected by epidemiological enquiry and one by passive surveillance. Epidemiological enquiries are legally required investigations on an outbreak farm to find out when and how the virus entered the farm and to obtain information on contact farms where the ASF virus may have been spread. Of the eight secondary outbreaks detected by epidemiological investigations, six were within the protection zone, one was within the surveillance zone and one outside the restricted zone. Epidemiological investigations were therefore the most effective means of detecting secondary outbreaks, whether inside or outside the restricted zones, while active surveillance was not effective. Active surveillance are legally prescribed activities carried out by the competent authorities in the restricted zones. Furthermore, as ASF is no longer a rare and exotic disease in the EU, it could be listed as a "Category B" disease, which in turn would allow for more flexibility and "tailor-made" control measures, e.g., regarding the size of the restricted zone.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Sus scrofa , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Países Bálticos
7.
EFSA J ; 22(4): e8755, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38638555

RESUMO

Selecting appropriate diagnostic methods that take account of the type of vaccine used is important when implementing a vaccination programme against highly pathogenic avian influenza (HPAI). If vaccination is effective, a decreased viral load is expected in the samples used for diagnosis, making molecular methods with high sensitivity the best choice. Although serological methods can be reasonably sensitive, they may produce results that are difficult to interpret. In addition to routine molecular monitoring, it is recommended to conduct viral isolation, genetic sequencing and phenotypic characterisation of any HPAI virus detected in vaccinated flocks to detect escape mutants early. Following emergency vaccination, various surveillance options based on virological testing of dead birds ('bucket sampling') at defined intervals were assessed to be effective for early detection of HPAIV and prove disease freedom in vaccinated populations. For ducks, virological or serological testing of live birds was assessed as an effective strategy. This surveillance could be also applied in the peri-vaccination zone on vaccinated establishments, while maintaining passive surveillance in unvaccinated chicken layers and turkeys, and weekly bucket sampling in unvaccinated ducks. To demonstrate disease freedom with > 99% confidence and to detect HPAI virus sufficiently early following preventive vaccination, monthly virological testing of all dead birds up to 15 per flock, coupled with passive surveillance in both vaccinated and unvaccinated flocks, is recommended. Reducing the sampling intervals increases the sensitivity of early detection up to 100%. To enable the safe movement of vaccinated poultry during emergency vaccination, laboratory examinations in the 72 h prior to the movement can be considered as a risk mitigation measure, in addition to clinical inspection; sampling results from existing surveillance activities carried out in these 72 h could be used. In this Opinion, several schemes are recommended to enable the safe movement of vaccinated poultry following preventive vaccination.

8.
EFSA J ; 22(6): e8835, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38933535

RESUMO

Sheep and goats of different ages may have to be killed on-farm for purposes other than slaughter (where slaughter is defined as killing for human consumption) either individually (i.e. on-farm killing of unproductive, injured or terminally ill animals) or on a large scale (i.e. depopulation for disease control purposes and for other situations, such as environmental contamination and disaster management) outside the slaughterhouses. The purpose of this opinion was to assess the hazards and welfare consequences associated with the on-farm killing of sheep and goats. The whole killing procedure was divided into Phase 1 (pre-killing) - that included the processes (i) handling and moving the animals to the killing place and (ii) restraint of the animals before application of the killing methods and Phase 2 - that included stunning and killing of the animals. The killing methods for sheep and goats were grouped into three categories: (1) mechanical, (2) electrical and (3) lethal injection. Welfare consequences that sheep and goats may experience during each process were identified (e.g. handling stress, restriction of movements and tissue lesions during restraint) and animal-based measures (ABMs) to assess them were proposed. During application of the killing method, sheep and goats will experience pain and fear if they are ineffectively stunned or if they recover consciousness. ABMs related to the state of consciousness can be used to indirectly assess pain and fear. Flowcharts including ABMs for consciousness specific to each killing method were included in the opinion. Possible welfare hazards were identified for each process, together with their origin and related preventive and corrective measures. Outcome tables linking hazards, welfare consequences, ABMs, origins, preventive and corrective measures were developed for each process. Mitigation measures to minimise welfare consequences were proposed.

9.
EFSA J ; 22(7): e8855, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39005713

RESUMO

The EFSA Panel on Animal Health and Welfare (AHAW) was asked to deliver a scientific opinion on the use of high-expansion foam for stunning and killing pigs and poultry. A dossier was provided by the applicant as the basis for an assessment of the extent to which the method is able to provide a level of animal welfare at least equivalent to that ensured by the currently allowed methods for pigs and poultry. According to legislation, to be approved in the EU, new stunning methods must ensure (1) the absence of pain, distress or suffering until the onset of unconsciousness, and (2) that the animal remains unconscious until death. An ad hoc Working Group set up by EFSA performed the assessment as follows: (1) The data provided were checked against the criteria laid down in the EFSA Guidance (EFSA, 2018), and was found to partially fulfil those criteria; (2) extensive literature search; (3) data extraction for quantitative assessment; (4) qualitative exercise based on non-formal expert elicitation. The assessment led to conclude that it is more likely than not (certainty > 50%-100%) that high-expansion foam for stunning and killing pigs and poultry, named NEFS in container (Nitrogen Expansion Foam Stunning in container), provides a level of welfare at least equivalent to one or more of the currently allowed methods listed in Annex I of Council Regulation (EC) No 1099/2009. The overall assessment of EFSA is valid only under the technical conditions described in this Opinion for laying hens, broiler chickens of all age and pigs weighing 15-41 kg in situations other than slaughter. The overall assessment of EFSA is that NEFS can be suitable for depopulation using containers for pig and poultry farms respecting the technical conditions and the categories and types of animals defined in this Scientific Opinion.

10.
Microorganisms ; 11(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37110243

RESUMO

Q fever, a disease caused by Coxiella burnetii (CB), is an emerging zoonotic health problem. The prevalence data from potential sources are valuable for assessing the risk to human and animal health. To estimate the prevalence of CB antibodies in Estonian ruminants, pooled milk and serum samples from cattle (Bos taurus) and pooled serum samples from sheep (Ovis aries) and goats (Capra hircus) were analyzed. Additionally, bulk tank milk samples (BTM; n = 72) were analyzed for the presence of CB DNA. Questionnaires and herd-level datasets were used to identify the risk factors for exposure using binary logistic regression analysis. The prevalence of CB-positive dairy cattle herds (27.16%) was significantly higher than that in beef cattle herds (6.67%) and sheep flocks (2.35%). No CB antibodies were detected in the goat flocks. CB DNA was found in 11.36% of the BTM samples. The odds of seropositivity were higher in dairy cattle herds, with an increasing number of cattle in the herd, and with location in southwestern, northeastern and northwestern Estonia. Dairy cattle herds had higher odds of testing positive for CB in BTM if the dairy cows were kept loose and lower odds if the herd was located in northwestern Estonia.

11.
Pathogens ; 12(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37242390

RESUMO

The African swine fever virus (ASFV) was first detected in Estonia, in September 2014. In the subsequent three years, the virus spread explosively all over the country. Only one county, the island of Hiiumaa, remained free of the disease. Due to the drastic decrease in the wild boar population in the period of 2015-2018, the number of ASFV-positive cases among wild boar decreased substantially. From the beginning of 2019 to the autumn of 2020, no ASFV-positive wild boar or domestic pigs were detected in Estonia. A new occurrence of ASFV was detected in August 2020, and by the end of 2022, ASFV had been confirmed in seven counties in Estonia. Investigations into proven molecular markers, such as IGR I73R/I329L, MGF505-5R, K145R, O174L, and B602L, were performed with the aim of clarifying whether these cases of ASFV were new entries or remnants of previous epidemics. The sequences from the period of 2014-2022 were compared to the Georgia 2007/1 reference sequence and the variant strains present in Europe. The results indicated that not all the molecular markers of the virus successfully used in other geographical regions were suitable for tracing the spread of ASFV in Estonia. Only the B602L-gene analysis enabled us to place the ASFV isolates spreading in 2020-2022 into two epidemiologically different clusters.

12.
J Food Prot ; 86(11): 100171, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778508

RESUMO

The BIOPIGEE project (part of the One Health European Joint Programme under Horizon 2020) aimed to identify relevant measures to effectively control Salmonella, and another zoonotic pathogen, hepatitis E virus (HEV) within the pig meat food chain. The aim of this study was to identify biosecurity measures or management practices that are relevant for limiting Salmonella and/or HEV occurrence and spread within pig slaughterhouses. This was with the final goal of compiling a list of biosecurity measures for different processes and operations along the slaughter line with evidence of their effectiveness. To achieve this, a literature review was conducted on studies estimating the effectiveness of measures applied in slaughterhouses to reduce the microbial contamination of pig carcasses. Results of this literature search are discussed and presented in summary tables that could be used as a source of information for the pig slaughter industry to further develop their guidelines on hygienic slaughter.


Assuntos
Contaminação de Alimentos , Microbiologia de Alimentos , Suínos , Animais , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Carne , Prevalência , Salmonella , Matadouros
13.
EFSA J ; 21(2): e07822, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36860662

RESUMO

The epidemiological situation of SARS-CoV-2 in humans and animals is continually evolving. To date, animal species known to transmit SARS-CoV-2 are American mink, raccoon dog, cat, ferret, hamster, house mouse, Egyptian fruit bat, deer mouse and white-tailed deer. Among farmed animals, American mink have the highest likelihood to become infected from humans or animals and further transmit SARS-CoV-2. In the EU, 44 outbreaks were reported in 2021 in mink farms in seven MSs, while only six in 2022 in two MSs, thus representing a decreasing trend. The introduction of SARS-CoV-2 into mink farms is usually via infected humans; this can be controlled by systematically testing people entering farms and adequate biosecurity. The current most appropriate monitoring approach for mink is the outbreak confirmation based on suspicion, testing dead or clinically sick animals in case of increased mortality or positive farm personnel and the genomic surveillance of virus variants. The genomic analysis of SARS-CoV-2 showed mink-specific clusters with a potential to spill back into the human population. Among companion animals, cats, ferrets and hamsters are those at highest risk of SARS-CoV-2 infection, which most likely originates from an infected human, and which has no or very low impact on virus circulation in the human population. Among wild animals (including zoo animals), mostly carnivores, great apes and white-tailed deer have been reported to be naturally infected by SARS-CoV-2. In the EU, no cases of infected wildlife have been reported so far. Proper disposal of human waste is advised to reduce the risks of spill-over of SARS-CoV-2 to wildlife. Furthermore, contact with wildlife, especially if sick or dead, should be minimised. No specific monitoring for wildlife is recommended apart from testing hunter-harvested animals with clinical signs or found-dead. Bats should be monitored as a natural host of many coronaviruses.

14.
EFSA J ; 21(2): e07788, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36824680

RESUMO

This Scientific Opinion considers the welfare of domestic fowl (Gallus gallus) related to the production of meat (broilers) and includes the keeping of day-old chicks, broiler breeders, and broiler chickens. Currently used husbandry systems in the EU are described. Overall, 19 highly relevant welfare consequences (WCs) were identified based on severity, duration and frequency of occurrence: 'bone lesions', 'cold stress', 'gastro-enteric disorders', 'group stress', 'handling stress', 'heat stress', 'isolation stress', 'inability to perform comfort behaviour', 'inability to perform exploratory or foraging behaviour', 'inability to avoid unwanted sexual behaviour', 'locomotory disorders', 'prolonged hunger', 'prolonged thirst', 'predation stress', 'restriction of movement', 'resting problems', 'sensory under- and overstimulation', 'soft tissue and integument damage' and 'umbilical disorders'. These WCs and their animal-based measures (ABMs) that can identify them are described in detail. A variety of hazards related to the different husbandry systems were identified as well as ABMs for assessing the different WCs. Measures to prevent or correct the hazards and/or mitigate each of the WCs are listed. Recommendations are provided on quantitative or qualitative criteria to answer specific questions on the welfare of broilers and related to genetic selection, temperature, feed and water restriction, use of cages, light, air quality and mutilations in breeders such as beak trimming, de-toeing and comb dubbing. In addition, minimal requirements (e.g. stocking density, group size, nests, provision of litter, perches and platforms, drinkers and feeders, of covered veranda and outdoor range) for an enclosure for keeping broiler chickens (fast-growing, slower-growing and broiler breeders) are recommended. Finally, 'total mortality', 'wounds', 'carcass condemnation' and 'footpad dermatitis' are proposed as indicators for monitoring at slaughter the welfare of broilers on-farm.

15.
EFSA J ; 21(8): e08173, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533748

RESUMO

Vector or reservoir species of five mollusc diseases listed in the Animal Health Law were identified, based on evidence generated through an extensive literature review, to support a possible updating of Regulation (EU) 2018/1882. Mollusc species on or in which Mikrocytos mackini, Perkinsus marinus, Bonamia exitiosa, Bonamia ostreae and Marteilia refringens were detected, in the field or during experiments, were classified as reservoir species with different levels of certainty depending on the diagnostic tests used. Where experimental evidence indicated transmission of the pathogen from a studied species to another known susceptible species, this studied species was classified as a vector species. Although the quantification of the risk of spread of the pathogens by the vectors or reservoir species was not part of the terms of reference, such risks do exist for the vector species, since transmission from infected vector species to susceptible species was proven. Where evidence for transmission from infected molluscs was not found, these were defined as reservoir. Nonetheless, the risk of the spread of the pathogens from infected reservoir species cannot be excluded. Evidence identifying conditions that may prevent transmission by vectors or reservoir mollusc species during transport was collected from scientific literature. It was concluded that it is very likely to almost certain (90-100%) that M. mackini, P. marinus, B. exitiosa B. ostreae and M. refringens will remain infective at any possible transport condition. Therefore, vector or reservoir species that may have been exposed to these pathogens in an affected area in the wild or at aquaculture establishments or through contaminated water supply can possibly transmit these pathogens. For transmission of M. refringens, the presence of an intermediate host, a copepod, is necessary.

16.
EFSA J ; 21(8): e08172, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533749

RESUMO

Vector or reservoir species of three diseases of crustaceans listed in the Animal Health Law were identified based on evidence generated through an extensive literature review, to support a possible updating of Regulation (EU) 2018/1882. Crustacean species on or in which Taura syndrome virus (TSV), Yellow head virus (YHV) or White spot syndrome virus (WSSV) were identified, in the field or during experiments, were classified as reservoir species with different levels of certainty depending on the diagnostic tests used. Where experimental evidence indicated transmission of the pathogen from a studied species to another known susceptible species, the studied species was classified as vector species. Although the quantification of the risk of spread of the pathogens by the vectors or reservoir species was not part of the terms of reference, such risks do exist for the vector species, since transmission from infected vector species to susceptible species was proven. Where evidence for transmission from infected crustaceans was not found, these were defined as reservoirs. Nonetheless, the risk of the spread of the pathogens from infected reservoir species cannot be excluded. Evidence identifying conditions that may prevent transmission by vectors during transport was collected from scientific literature. It was concluded that it is very likely to almost certain (90-100%) that WSSV, TSV and YHV will remain infective at any possible transport condition. Therefore, vector or reservoir species that may have been exposed to these pathogens in an affected area in the wild or aquaculture establishments or by water supply can possibly transmit WSSV, TSV and YHV.

17.
EFSA J ; 21(8): e08174, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533750

RESUMO

Vector or reservoir species of five fish diseases listed in the Animal Health Law were identified, based on evidence generated through an extensive literature review (ELR), to support a possible updating of Regulation (EU) 2018/1882. Fish species on or in which highly polymorphic region-deleted infectious salmon anaemia virus (HPR∆ ISAV), Koi herpes virus (KHV), epizootic haematopoietic necrosis virus (EHNV), infectious haematopoietic necrosis virus (IHNV) or viral haemorrhagic septicaemia virus (VHSV) were detected, in the field or during experiments, were classified as reservoir species with different levels of certainty depending on the diagnostic tests used. Where experimental evidence indicated transmission of the pathogen from a studied species to another known susceptible species, the studied species was classified as a vector species. Although the quantification of the risk of spread of the pathogens by the vectors or reservoir species was not part of the terms or reference, such risks do exist for the vector species, since transmission from infected vector species to susceptible species was proven. Where evidence for transmission from infected fish was not found, these were defined as reservoirs. Nonetheless, the risk of the spread of the pathogens from infected reservoir species cannot be excluded. Evidence identifying conditions that may prevent transmission by vectors or reservoir fish species during transport was collected from scientific literature. For VHSV, IHNV or HPR∆ ISAV, it was concluded that under transport conditions at temperatures below 25°C, it is likely (66-90%) they will remain infective. Therefore, vector or reservoir species that may have been exposed to these pathogens in an affected area in the wild, aquaculture establishments or through water supply can possibly transmit VHSV, IHNV or HPR∆ ISAV into a non-affected area when transported at a temperature below 25°C. The conclusion was the same for EHN and KHV; however, they are likely to remain infective under all transport temperatures.

18.
EFSA J ; 21(3): e07896, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37009444

RESUMO

This Scientific Opinion addresses a European Commission request on the welfare of calves as part of the Farm to Fork strategy. EFSA was asked to provide a description of common husbandry systems and related welfare consequences, as well as measures to prevent or mitigate the hazards leading to them. In addition, recommendations on three specific issues were requested: welfare of calves reared for white veal (space, group housing, requirements of iron and fibre); risk of limited cow-calf contact; and animal-based measures (ABMs) to monitor on-farm welfare in slaughterhouses. The methodology developed by EFSA to address similar requests was followed. Fifteen highly relevant welfare consequences were identified, with respiratory disorders, inability to perform exploratory or foraging behaviour, gastroenteric disorders and group stress being the most frequent across husbandry systems. Recommendations to improve the welfare of calves include increasing space allowance, keeping calves in stable groups from an early age, ensuring good colostrum management and increasing the amounts of milk fed to dairy calves. In addition, calves should be provided with deformable lying surfaces, water via an open surface and long-cut roughage in racks. Regarding specific recommendations for veal systems, calves should be kept in small groups (2-7 animals) within the first week of life, provided with ~ 20 m2/calf and fed on average 1 kg neutral detergent fibre (NDF) per day, preferably using long-cut hay. Recommendations on cow-calf contact include keeping the calf with the dam for a minimum of 1 day post-partum. Longer contact should progressively be implemented, but research is needed to guide this implementation in practice. The ABMs body condition, carcass condemnations, abomasal lesions, lung lesions, carcass colour and bursa swelling may be collected in slaughterhouses to monitor on-farm welfare but should be complemented with behavioural ABMs collected on farm.

19.
EFSA J ; 21(5): e07992, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37200855

RESUMO

This Scientific Opinion concerns the welfare of Domestic ducks (Anas platyrhynchos domesticus), Muscovy ducks (Cairina moschata domesticus) and their hybrids (Mule ducks), Domestic geese (Anser anser f. domesticus) and Japanese quail (Coturnix japonica) in relation to the rearing of breeders, birds for meat, Muscovy and Mule ducks and Domestic geese for foie gras and layer Japanese quail for egg production. The most common husbandry systems (HSs) in the European Union are described for each animal species and category. The following welfare consequences are described and assessed for each species: restriction of movement, injuries (bone lesions including fractures and dislocations, soft tissue lesions and integument damage and locomotory disorders including lameness), group stress, inability to perform comfort behaviour, inability to perform exploratory or foraging behaviour and inability to express maternal behaviour (related to prelaying and nesting behaviours). Animal-based measures relevant for the assessment of these welfare consequences were identified and described. The relevant hazards leading to the welfare consequences in the different HSs were identified. Specific factors such as space allowance (including minimum enclosure area and height) per bird, group size, floor quality, characteristics of nesting facilities and enrichment provided (including access to water to fulfil biological needs) were assessed in relation to the welfare consequences and, recommendations on how to prevent the welfare consequences were provided in a quantitative or qualitative way.

20.
EFSA J ; 21(5): e07993, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37200854

RESUMO

This Scientific Opinion addresses a European Commission's mandate on the welfare of dairy cows as part of the Farm to Fork strategy. It includes three assessments carried out based on literature reviews and complemented by expert opinion. Assessment 1 describes the most prevalent housing systems for dairy cows in Europe: tie-stalls, cubicle housing, open-bedded systems and systems with access to an outdoor area. Per each system, the scientific opinion describes the distribution in the EU and assesses the main strengths, weaknesses and hazards potentially reducing the welfare of dairy cows. Assessment 2 addresses five welfare consequences as requested in the mandate: locomotory disorders (including lameness), mastitis, restriction of movement and resting problems, inability to perform comfort behaviour and metabolic disorders. Per each welfare consequence, a set of animal-based measures is suggested, a detailed analysis of the prevalence in different housing systems is provided, and subsequently, a comparison of the housing systems is given. Common and specific system-related hazards as well as management-related hazards and respective preventive measures are investigated. Assessment 3 includes an analysis of farm characteristics (e.g. milk yield, herd size) that could be used to classify the level of on-farm welfare. From the available scientific literature, it was not possible to derive relevant associations between available farm data and cow welfare. Therefore, an approach based on expert knowledge elicitation (EKE) was developed. The EKE resulted in the identification of five farm characteristics (more than one cow per cubicle at maximum stocking density, limited space for cows, inappropriate cubicle size, high on-farm mortality and farms with less than 2 months access to pasture). If one or more of these farm characteristics are present, it is recommended to conduct an assessment of cow welfare on the farm in question using animal-based measures for specified welfare consequences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA