Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 21(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36976225

RESUMO

Astaxanthin (3,3-dihydroxy-ß, ß-carotene-4,4-dione) is a ketocarotenoid synthesized by Haematococcus pluvialis/lacustris, Chromochloris zofingiensis, Chlorococcum, Bracteacoccus aggregatus, Coelastrella rubescence, Phaffia rhodozyma, some bacteria (Paracoccus carotinifaciens), yeasts, and lobsters, among others However, it is majorly synthesized by Haematococcus lacustris alone (about 4%). The richness of natural astaxanthin over synthetic astaxanthin has drawn the attention of industrialists to cultivate and extract it via two stage cultivation process. However, the cultivation in photobioreactors is expensive, and converting it in soluble form so that it can be easily assimilated by our digestive system requires downstream processing techniques which are not cost-effective. This has made the cost of astaxanthin expensive, prompting pharmaceutical and nutraceutical companies to switch over to synthetic astaxanthin. This review discusses the chemical character of astaxanthin, more inexpensive cultivating techniques, and its bioavailability. Additionally, the antioxidant character of this microalgal product against many diseases is discussed, which can make this natural compound an excellent drug to minimize inflammation and its consequences.


Assuntos
Antioxidantes , Clorofíceas , Antioxidantes/farmacologia , Disponibilidade Biológica , Xantofilas/farmacologia , Xantofilas/química , Carotenoides
2.
Arch Microbiol ; 205(1): 30, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525087

RESUMO

The demand for nanoparticles is increasing tremendously, and so is the risk of their foreseeable discharge into the environment. Nanoparticles contain a variety of features, including anti-microbial properties, and have been shown to have toxic effects on aquatic organisms previously. However, the causes of nanoparticle toxicity under environmental conditions are still unknown. Exposure to nanoparticles in the environment is unavoidable as nanomaterials are used more prevalent in our daily lives, and as a result, nanotoxicity research is gaining traction. To understand the impact of nanoparticle toxicity on aquatic biota, cyanobacteria (blue-green algae) are an ideal model system. The cyanobacteria play an important role in ecological balance, nutrient cycling, energy flow, biological nitrogen fixation, and environmental remediation, and their susceptibility to nanoparticles can help in making a wise strategy for the mitigation of possible nano-pollution. This article presents an analysis of recent research findings on the toxicological influences of nanoparticles on the growth rate, biochemical changes, ultra-structural changes as well as the nanoparticle toxicity mechanisms in cyanobacteria. The finding suggests that the shading effect, generation of reactive oxygen species, membrane damage and disintegration of pigments are the main reasons for nanoparticle toxicity to the cyanobacteria.


Assuntos
Cianobactérias , Nanopartículas , Nanoestruturas , Nanopartículas/toxicidade , Nanopartículas/química , Espécies Reativas de Oxigênio
3.
Environ Res ; 214(Pt 2): 113909, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35850292

RESUMO

In a desperate attempt to find organic alternatives to synthetic fertilizers, agricultural scientists are increasingly using biochar as a soil amendment. Using chemical fertilizers results in enormous financial burdens and chronic health problems for plants and soils. Global concerns have also increased over the prolonged consumption of foods grown with artificial fertilizers and growth promotors. This adversely affects the environment and the welfare of humans, animals, and other living organisms. This way, organic biofertilizers have established a sustainable farming system. In such a context, biochar is gaining much attention among scientists as it may improve the overall performance of plants; in particular, crops have been optimistically cultivated with the addition of various sources. Field experiments have been conducted with multiple plant-based biochars and animal manure-based biochar. Plants receive different essential nutrients from biochar due to their physicochemical properties. Despite extensive research on biochar's effects on plant growth, yield, and development, it is still unknown how biochar promotes such benefits. Plant performance is affected by many factors in response to biochar amendment, but biochar's effect on nutrient uptake is not widely investigated. We attempted this review by examining how biochar affects nutrient uptake in various crop plants based on its amendment, nutrient composition, and physicochemical and biological properties. A greater understanding and optimization of biochar-plant nutrient interactions will be possible due to this study.


Assuntos
Carvão Vegetal , Fertilizantes , Animais , Carvão Vegetal/química , Produtos Agrícolas , Fertilizantes/análise , Humanos , Nutrientes , Solo/química
4.
Environ Res ; 212(Pt D): 113454, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597291

RESUMO

Microbial fuel cells are biochemical factories which besides recycling wastewater are electricity generators, if their low power density can be scaled up. This also adds up to work on many factors responsible to increase the cost of running a microbial fuel cell. As a result, the first step is to use environment friendly dead organic algae biomass or even living algae cells in a microbial fuel cell, also referred to as microalgal microbial fuel cells. This can be a techno-economic aspect not only for treating textile wastewater but also an economical way of obtaining value added products and bioelectricity from microalgae. Besides treating wastewater, microalgae in its either form plays an essential role in treating dyes present in wastewater which essentially include azo dyes rich in synthetic ions and heavy metals. Microalgae require these metals as part of their metabolism and hence consume them throughout the integration process in a microbial fuel cell. In this review a detail plan is laid to discuss the treatment of industrial effluents (rich in toxic dyes) employing microbial fuel cells. Efforts have been made by researchers to treat dyes using microbial fuel cell alone or in combination with catalysts, nanomaterials and microalgae have also been included. This review therefore discusses impact of microbial fuel cells in treating wastewater rich in textile dyes its limitations and future aspects.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Ambientais , Microalgas , Corantes/metabolismo , Poluentes Ambientais/metabolismo , Microalgas/metabolismo , Águas Residuárias
5.
J Eukaryot Microbiol ; 68(6): e12866, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34273209

RESUMO

The morphological characteristics of diatoms are useful for studying their taxonomy. However, the distinction between closely related diatom taxa can be very difficult, especially when the morphological characters are modified by environmental constraints. In the present study, 13 fresh water diatoms were identified morphologically and cultured under axenic conditions. To check this, PCR primers specific for multilocus genes were designed to amplify and screen 13 fresh water diatom monocultures. Multilocus PCR primers (DRR3, scfcpA, Lhcf11, SIT1, SIT3, SIT4, LOC101218388, COI-5P, rbcL, rbcL-3P, LSU D2/D3, UPA, psaA, and 18S rRNA) were tested. It was found that psaA gene, a plant pigment chlorophyll-based PCR marker, amplified in all the diatoms. Out of 13 diatom amplicons, only two fresh water diatoms DNA were sequenced. This included Cyclotella meneghiniana and Sellaphora pupula. The Sanger sequencing results thus established that morphologically identified diatom, Sellaphora pupula, exhibited close phylogeny to Sellaphora whereas fresh water Cyclotella meneghiniana has close lineage to marine diatom Thallosiosira.


Assuntos
Diatomáceas , Apoproteínas , Clorofila A , Diatomáceas/genética , Complexo de Proteína do Fotossistema I , Reação em Cadeia da Polimerase
6.
Environ Res ; 201: 111550, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34224710

RESUMO

Wastewater management and its treatment have revolutionized the industry sector into many innovative techniques. However, the cost of recycling via chemical treatment has major issues especially in economically poor sectors. On the offset, one of the most viable and economical techniques to clean wastewater is by growing microalgae in it. Since wastewater is rich in nitrates, phosphates and other trace elements, the environment is suitable for the growth of microalgae. On the other side, the cost of harvesting microalgae for its secondary metabolites is burgeoning. While simultaneously growing of microalgae in photobioreactors requires regular feeding of the nutrients and maintenance which increases the cost of operation and hence cost of its end products. The growth of microalgae in waste waters makes the process not only economical but they also manufacture more amounts of value added products. However, harvesting of these values added products is still a cumbersome task. On the offset, it has been observed that pretreating the microalgal biomass with ultrasonication allows easy oozing of the secondary metabolites like oil, proteins, carbohydrates and methane at much lower cost than that required for their extraction. Among microalgae diatoms are more robust and have immense crude oil and are rich in various value added products. However, due to their thick silica walls they do not ooze the metabolites until the mechanical force on their walls reaches certain threshold energy. In this review recycling of wastewater using microalgae and its pretreatment via ultrasonication with special reference to diatoms is critically discussed. Perspectives on circular bioeconomy and knowledge gaps for employing microalgae to recycle wastewater have been comprehensively narrated.


Assuntos
Diatomáceas , Microalgas , Agricultura , Águas Residuárias
7.
Electrophoresis ; 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32969082

RESUMO

Diatoms are unicellular microalgae with cell wall made up of rigid silica found in all open water bodies. They thus resist degradation and hence are important tool to diagnose cause of death in drowned bodies. The nitric acid digestion method practiced conventionally in forensic science laboratories has limitations due to manual error. Plant chloroplast genes found in diatoms such as ribulose-1,5-bisphosphate carboxylase oxygenase (rbcL-3P) and rbcL, universal plastidic amplicon (UPA), and photosynthesis I P700 apoprotein chlorophyll Al (psaA), which play an important role in photosystems I and II of photosynthesis, are tested to diagnose drowning in experimental mice. It was seen that psaA-2 showed amplification at 150 bp in all biological samples. The sequences of psaA-2 gene marker showed 100% proximity to Thalassiosira weissflogii and rbcL-3P showed 99% resemblance to Pseudo-nitzschia multiseries. On the other hand, in postmortem drowned biological samples, the chloroplast-based gene marker failed to show any amplification.

8.
Chembiochem ; 19(15): 1630-1637, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29771457

RESUMO

We report the design and synthesis of a biocompatible small-peptide-based compound for the controlled and targeted delivery of encapsulated bioactive metal ions through transformation of the internal nanostructures of its complexes. A tyrosine-based short-peptide amphiphile (sPA) was synthesized and observed to self-assemble into ß-sheet-like secondary structures. The self-assembly of the designed sPA was modulated by application of different bioactive transition-metal ions, as was confirmed by spectroscopic and microscopic techniques. These bioactive metal-ion-conjugated sPA hybrid structures were further used to develop antibacterial materials. As a result of the excellent antibacterial activity of zinc ions the growth of clinically relevant bacteria such as Escherichia coli was inhibited in the presence of zinc⋅sPA conjugate. Bacterial testing demonstrated that, due to high biocompatibility with bacterial cells, the designed sPA acted as a metal ion delivery agent and might therefore show great potential in locally addressing bacterial infections.


Assuntos
Antibacterianos/química , Nanoestruturas/química , Peptídeos/química , Tensoativos/química , Tirosina/química , Zinco/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Humanos , Metais/química , Metais/farmacologia , Nanoestruturas/ultraestrutura , Peptídeos/farmacologia , Estrutura Secundária de Proteína , Tensoativos/farmacologia , Tirosina/farmacologia , Zinco/farmacologia
9.
Mar Drugs ; 13(5): 2629-65, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25939034

RESUMO

The rise of human populations and the growth of cities contribute to the depletion of natural resources, increase their cost, and create potential climatic changes. To overcome difficulties in supplying populations and reducing the resource cost, a search for alternative pharmaceutical, nanotechnology, and energy sources has begun. Among the alternative sources, microalgae are the most promising because they use carbon dioxide (CO2) to produce biomass and/or valuable compounds. Once produced, the biomass is ordinarily harvested and processed (downstream program). Drying, grinding, and extraction steps are destructive to the microalgal biomass that then needs to be renewed. The extraction and purification processes generate organic wastes and require substantial energy inputs. Altogether, it is urgent to develop alternative downstream processes. Among the possibilities, milking invokes the concept that the extraction should not kill the algal cells. Therefore, it does not require growing the algae anew. In this review, we discuss research on milking of diatoms. The main themes are (a) development of alternative methods to extract and harvest high added value compounds; (b) design of photobioreactors;


Assuntos
Diatomáceas/química , Animais , Biomassa , Biotecnologia/métodos , Diatomáceas/crescimento & desenvolvimento , Humanos , Microalgas/química , Microalgas/crescimento & desenvolvimento , Fotobiorreatores
10.
Bioresour Technol ; 396: 130404, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336215

RESUMO

With advancements in research and the necessity of improving the performance of bioelectrochemical system (BES), coupling anaerobic digestion (AD) with BES is crucial for energy gain from wastewater and bioremediation. Hybridization of BES-AD concept opens new avenues for pollutant degradation, carbon capture and nutrient-resource recovery from wastewater. The strength of merging BES-AD lies in synergy, and this approach was employed to differentiate fads from strategies with the potential for full-scale implementation and making it an energy-positive system. The integration of BES and AD system increases the overall performance and complexity of combined system and the cost of operation. From a technical standpoint, the primary determinants of BES-AD feasibility for field applications are the scalability and economic viability. High potential market for such integrated system attract industrial partners for more industrial trials and investment before commercialization. However, BES-AD with high energy efficacy and negative economics demands performance boost.


Assuntos
Ácidos Alcanossulfônicos , Fontes de Energia Bioelétrica , Purificação da Água , Águas Residuárias , Anaerobiose , Fenômenos Físicos
11.
Sci Total Environ ; 914: 169766, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181955

RESUMO

The rapid global economic growth driven by industrialization and population expansion has resulted in significant issues, including reliance on fossil fuels, energy scarcity, water crises, and environmental emissions. To address these issues, bioelectrochemical systems (BES) have emerged as a dual-purpose solution, harnessing electrochemical processes and the capabilities of electrochemically active microorganisms (EAM) to simultaneously recover energy and treat wastewater. This review examines critical performance factors in BES, including inoculum selection, pretreatment methods, electrodes, and operational conditions. Further, authors explore innovative approaches to suppress methanogens and simultaneously enhance the EAM in mixed cultures. Additionally, advanced techniques for detecting EAM are discussed. The rapid detection of EAM facilitates the selection of suitable inoculum sources and optimization of enrichment strategies in BESs. This optimization is essential for facilitating the successful scaling up of BES applications, contributing substantially to the realization of clean energy and sustainable wastewater treatment. This analysis introduces a novel viewpoint by amalgamating contemporary research on the selective enrichment of EAM in mixed cultures. It encompasses identification and detection techniques, along with methodologies tailored for the selective enrichment of EAM, geared explicitly toward upscaling applications in BES.


Assuntos
Ácidos Alcanossulfônicos , Fontes de Energia Bioelétrica , Transporte de Elétrons , Eletrodos
12.
Environ Toxicol Pharmacol ; 106: 104356, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158029

RESUMO

Contamination of drinking water due to fluoride (F-) is a major concern worldwide. Although fluoride is an essential trace element required for humans, it has severe human health implications if levels exceed 1.5 mg. L-1 in groundwater. Several treatment technologies have been adopted to remove fluoride and reduce the exposure risk. The present article highlights the source, geochemistry, spatial distribution, and health implications of high fluoride in groundwater. Also, it discusses the underlying mechanisms and controlling factors of fluoride contamination. The problem of fluoride-contaminated water is more severe in India's arid and semiarid regions than in other Asian countries. Treatment technologies like adsorption, ion exchange, precipitation, electrolysis, electrocoagulation, nanofiltration, coagulation-precipitation, and bioremediation have been summarized along with case studies to look for suitable technology for fluoride exposure reduction. Although present technologies are efficient enough to remove fluoride, they have specific limitations regarding cost, labour intensity, and regeneration requirements.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Humanos , Fluoretos/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Água Potável/análise
13.
Bioresour Technol ; 387: 129551, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37506948

RESUMO

The rise in energy consumption would quadruple in the coming century and the, existing energy resources might be insufficient to meet the demand of the growing population. An alternative and sustainable energy resource is therefore needed to address the fossil fuel deficiency. The utility of microalgae strains in the aspect of biorefinery has been in research for quite some time. Algal biorefinery is an alternate way of renewable energy however even after decades of research it still suffers from commercialization bottlenecks. The current manuscript reviews the scenarios where the innovation needs an ignition for its commercialization. This review discusses the prospects of up-scale cultivation, and harvesting algal biomass for biorefineries. It narrates algal biorefinery hurdles that can be solved using integrated technology approach, life cycle assessment and applications of nanotechnology. The review also sheds light upon the ties of algal biorefineries with its economic viability.


Assuntos
Biocombustíveis , Microalgas , Biomassa , Plantas , Tecnologia
14.
Heliyon ; 9(5): e16205, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215776

RESUMO

Microbial electrochemical technologies (METs) are a group of innovative technologies that produce valuables like bioelectricity and biofuels with the simultaneous treatment of wastewater from microorganisms known as electroactive microorganisms. The electroactive microorganisms are capable of transferring electrons to the anode of a MET through various metabolic pathways such as direct (via cytochrome or pili) or indirect (through transporters) transfer. Though this technology is promising, the inferior yield of valuables and the high cost of reactor fabrication are presently impeding the large-scale application of this technology. Therefore, to overcome these major bottlenecks, a lot of research has been dedicated to the application of bacterial signalling, for instance, quorum sensing (QS) and quorum quenching (QQ) mechanisms in METs to improve its efficacy in order to achieve a higher power density and to make it more cost-effective. The QS circuit in bacteria produces auto-inducer signal molecules, which enhances the biofilm-forming ability and regulates the bacterial attachment on the electrode of METs. On the other hand, the QQ circuit can effectively function as an antifouling agent for the membranes used in METs and microbial membrane bioreactors, which is imperative for their stable long-term operation. This state-of-the-art review thus distinctly describes in detail the interaction between the QQ and QS systems in bacteria employed in METs to generate value-added by-products, antifouling strategies, and the recent applications of the signalling mechanisms in METs to improve their yield. Further, the article also throws some light on the recent advancements and the challenges faced while incorporating QS and QQ mechanisms in various types of METs. Thus, this review article will help budding researchers in upscaling METs with the integration of the QS signalling mechanism in METs.

15.
RSC Adv ; 13(32): 22630-22638, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37501775

RESUMO

The current study employs nanoengineering diatom and TiO2 NPs to form diatom-Si-TiO2 nanoengineered structures to fabricate a dye sensitized solar cell (DSSC) (DsTnas-DSSC). This was characterized and spin coated on a Fluorine-doped Tin Oxide (FTO) anode plate. The counter cathode was prepared by spin coating graphene oxide on a FTO glass plate and using Lugol's iodine as an electrolyte. The power density of DsTnas-DSSC was estimated with different natural dyes in comparison to conventional photosensitive ruthenium dye. It was found that the natural dyes extracted from plants and microalgae show significant power efficiencies in DSSC. The percentage efficiency of maximum power densities (PDmax) of DsTnas-DSSC obtained with photosensitive dyes were 9.4% with synthetic ruthenium dye (control) and 7.19% > 4.08% > 0.72% > 0.58% > 0.061% from natural dyes found in Haematococcus pluvialis (astaxanthin) > Syzygium cumini (anthocyanin) > Rosa indica (anthocyanin) > Hibiscus rosa-sinensis (anthocyanin) > Beta vulgaris (betalains), respectively. Among all the natural dyes used, the PDmax for the control ruthenium dye was 6.164 mW m-2 followed by the highest in astaxanthin natural dye from Haematococcus pluvialis (5.872 mW m-2). Overall, the use of natural dye DsTnas-DSSC makes the fuel cell low cost and an alternative to conventional expensive, metal and synthetic dyes.

16.
RSC Adv ; 13(26): 17611-17620, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37313002

RESUMO

In this study, the microalgae Haematococcus pluvialis were cultivated in wastewater inoculated into low-density polypropylene plastic air pillows (LDPE-PAPs) under a light stress. The cells were irradiated to different light stresses using white LED lights (WLs) as the control, and broad-spectrum lights (BLs) as a test for the period of 32 days. It was observed that the inoculum (70 × 102 mL-1 cells) of H. pluvialis algal cells increased almost 30 and 40 times in WL and BL, respectively, at day 32 coherent to its biomass productivity. Higher lipid concentration of up to 36.85 µg mL-1 was observed in BL irradiated cells compared to 13.215 µg L-1 dry weight of biomass in WL. The chlorophyll 'a' content was 2.6 times greater in BL (3.46 µg mL-1) compared to that in WL (1.32 µg mL-1) with total carotenoids being about 1.5 times greater in BL compared to WL on day 32. The yield of red pigment 'Astaxanthin' was about 27% greater in BL than in WL. The presence, of different carotenoids including astaxanthin was also confirmed by HPLC, whereas fatty acid methyl esters (FAMEs) were confirmed by GC-MS. This study further confirmed that wastewater alongwith with light stress is suitable for the biochemical growth of H. pluvialis with good biomass yield as well as carotenoid accumulation. Additionally there was 46% reduction in chemical oxygen demand (COD) in a far more efficient manner when cultured in recycled LDPE-PAP. Such type of cultivation of H. pluvialis made the overall process economical and suitable for upscaling to produce value-added products such as lipids, pigments, biomass, and biofuel for commercial applications.

17.
Sci Total Environ ; 823: 153667, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131253

RESUMO

Algal culturing in photobioreactors for biofuel and other value-added products is a challenge globally specifically due to expensive closed or open photobioreactors associated with the high cost, problems of water loss and contamination. Among the wide varieties of microalgae, diatoms have come out as potential source for crude oil in the form of Diafuel™ (biofuel from diatoms). However, culturing diatoms at large scale hypothesized as diatom solar panels for biofuel production is still facing a need for facile and economical production of value-added products. The aim of this work was to culture diatom (microalgae) in a closed system by sealing the reactor rim tightly with very cheap priced and used plastic bubble wrap material which is generally discarded in a lodging and transportation of goods. To optimize it, different plastic wraps discarded from a plastic industry were tested first for their permeability to gases and impermeability to water loss. It was found that among different varieties of plastic bubble wraps, low density polyethylene (LDPE) bubble wrap material which was used to seal glass containers as photobioreactors allowed harvest of maximum Diafuel™ (37%), lipid (35 µgmL-1), highest cell count (1152 × 102 cells mL-1), maximum CO2 absorbance (0.084) with almost no water loss and nutrient uptake for 40 days of experiments. This was due to its permeability to gases and impermeability to water. To check usability of such LDPE bubble wrap on other microalgae it was therefore tested on the red-green microalgae Haematococcus pluvialis, which showed scope to be scaled up for astaxanthin production using discarded bubble wrap packing material. This study thus would open up a new way for decreasing plastic disposal and with reuse for sustainable development and application of diatom in biofuel production which could find applications in environmental and industrial sectors.


Assuntos
Diatomáceas , Microalgas , Biocombustíveis , Biomassa , Fotobiorreatores , Plásticos
18.
Chemosphere ; 291(Pt 1): 132692, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34718006

RESUMO

Perovskite solar cells (PVSCs) convert solar energy into electrical energy. Current study employs fabrication of PVSCs using calcium titanate (CaTiO3) prepared by co-precipitation of TiO2 nanoparticle (NP) and CaCO3 NP with later synthesized from mollusc shell. Furthermore, frustules of diatom, Nitzschia palea were used to prepare silica doped CaTiO3 (Si-CaTiO3) nanocomposite. CaTiO3 NP and Si-CaTiO3 nanocomposites film were made on fluorine doped tin oxide (FTO) glass plate using spin coater separately for two different kinds of PVSCs tested at different intensities of light. The perovskite materials were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray (EDX) spectroscopy. Thickness of the film was measured by profilometer. The maximum power density (PDmax) of CaTiO3 made PVSCs was 0.235 mW/m2 under white LED light and 0.041 mW/m2 in broad spectrum light. Whereas, PDmax of PVSCs with Si-CaTiO3 was higher about 0.0083 mW/m2 in broad spectrum light and was 0.0039 mW/m2 in white LED light. This is due to the fact that CaTiO3 allowed blue and red light in broad spectrum to pass through it without being absorbed compared to white LED light which gets reflected. On the offset, in PVSC made of Si-CaTiO3 since diatoms frustules are made up of nanoporous architecture it increases the overall porosity of PVSC making them potentially more efficient in broad spectrum of light compared to white LED light.


Assuntos
Diatomáceas , Nanopartículas , Animais , Materiais Biocompatíveis , Compostos de Cálcio , Moluscos , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio , Difração de Raios X
19.
Chemosphere ; 291(Pt 1): 132841, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34767852

RESUMO

Microbial fuel cell (MFC) with live diatoms (Nitzschia palea) displacing bacteria in the anodic chamber generated electrical potential. Unlike other microalgae, diatoms fix 25% of atmospheric CO2, thus releasing O2. They perform photolysis of water by photosynthesis in the plastid during light photoperiod and cellular respiration in the mitochondria during dark, producing electrons and protons, respectively. The electrogenic property of diatom was explored and evaluated by comparing the potential changes with reference fuel cell without diatoms and that operated with diatoms in the anodic chamber. Such photosynthetic diatom microbial fuel cell (PDMFC) employed f/2 media rich in nitrates, phosphates, metasilicates, trace metals and vitamins as the anolyte and potassium permanganate as catholyte enhanced the output voltage by 3rd day. The maximum power density for PDMFC was 12.62 mWm-2 and coulombic efficiency of 22.95%. Besides this, the fixed diatom cells at anode showed about 64.28% increase in lipid production on 15th day compared to that on 1st day along with the increment in formation of complex fatty acid methyl esters and carotenoids during its operation. Hence, diatoms can be envisaged to substitute bacteria in the anodic chamber of MFC to simultaneously produce bioelectricity and other valuable compounds. Further their silica nanoporous architecture serve as good absorbents for heavy metal removal found in many wastewaters.


Assuntos
Fontes de Energia Bioelétrica , Diatomáceas , Carotenoides , Eletricidade , Eletrodos
20.
Bioresour Technol ; 363: 127935, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36100187

RESUMO

Electrochemists and ecological engineers find environmental bioelectrochemistry appealing; however, there is a big gap between expectations and actual progress in bioelectrochemical system (BES). Implementing such technology opens new opportunities for novel electrochemical reactions for resource recovery and effective wastewater treatment. Loopholes of BES exist in its scaling-up applications, and numerous attempts toward practical applications (200, 1000, and 1500 L) are key successive indicators toward its commercialization. This review emphasized the critical rethinking of standardization of performance indices i.e. current generation (A/m2), net energy recovery (kWh/kg·COD), product/resource yield (mM), and economic feasibility ($/kWh) to make fair comparison with the existing treatment system. Therefore, directional perspectives, including modularity, energy-cost balance, energy and resource recovery, have been proposed for the sustainable market of BES. The current state of the art and up-gradation in resource recovery and contaminant removal warrants a systematic rethinking of functional worth and niches of BES for practical applications.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Ácidos Alcanossulfônicos , Eletroquímica , Eletrodos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA