Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS Pathog ; 18(4): e1010425, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35381053

RESUMO

Although Salmonella Typhimurium (STM) and Salmonella Paratyphi A (SPA) belong to the same phylogenetic species, share large portions of their genome and express many common virulence factors, they differ vastly in their host specificity, the immune response they elicit, and the clinical manifestations they cause. In this work, we compared their intracellular transcriptomic architecture and cellular phenotypes during human epithelial cell infection. While transcription induction of many metal transport systems, purines, biotin, PhoPQ and SPI-2 regulons was similar in both intracellular SPA and STM, we identified 234 differentially expressed genes that showed distinct expression patterns in intracellular SPA vs. STM. Surprisingly, clear expression differences were found in SPI-1, motility and chemotaxis, and carbon (mainly citrate, galactonate and ethanolamine) utilization pathways, indicating that these pathways are regulated differently during their intracellular phase. Concurring, on the cellular level, we show that while the majority of STM are non-motile and reside within Salmonella-Containing Vacuoles (SCV), a significant proportion of intracellular SPA cells are motile and compartmentalized in the cytosol. Moreover, we found that the elevated expression of SPI-1 and motility genes by intracellular SPA results in increased invasiveness of SPA, following exit from host cells. These findings demonstrate unexpected flagellum-dependent intracellular motility of a typhoidal Salmonella serovar and intriguing differences in intracellular localization between typhoidal and non-typhoidal salmonellae. We propose that these differences facilitate new cycles of host cell infection by SPA and may contribute to the ability of SPA to disseminate beyond the intestinal lamina propria of the human host during enteric fever.


Assuntos
Quimiotaxia , Salmonella paratyphi A , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Flagelos/genética , Flagelos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Filogenia , Salmonella paratyphi A/metabolismo , Salmonella typhimurium
2.
BMC Microbiol ; 21(1): 153, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020586

RESUMO

BACKGROUND: Salmonella can invade host cells via a type three secretion system called T3SS-1 and its outer membrane proteins, PagN and Rck. However, the mechanism of PagN-dependent invasion pathway used by Salmonella enterica, subspecies enterica serovar Typhimurium remains unclear. RESULTS: Here, we report that PagN is well conserved and widely distributed among the different species and subspecies of Salmonella. We showed that PagN of S. Typhimurium was sufficient and necessary to enable non-invasive E. coli over-expressing PagN and PagN-coated beads to bind to and invade different non-phagocytic cells. According to the literature, PagN is likely to interact with heparan sulfate proteoglycan (HSPG) as PagN-mediated invasion could be inhibited by heparin treatment in a dose-dependent manner. This report shows that this interaction is not sufficient to allow the internalization mechanism. Investigation of the role of ß1 integrin as co-receptor showed that mouse embryo fibroblasts genetically deficient in ß1 integrin were less permissive to PagN-mediated internalization. Moreover, PagN-mediated internalization was fully inhibited in glycosylation-deficient pgsA-745 cells treated with anti-ß1 integrin antibody, supporting the hypothesis that ß1 integrin and HSPG cooperate to induce the PagN-mediated internalization mechanism. In addition, use of specific inhibitors and expression of dominant-negative derivatives demonstrated that tyrosine phosphorylation and class I phosphatidylinositol 3-kinase were crucial to trigger PagN-dependent internalization, as for the Rck internalization mechanism. Finally, scanning electron microscopy with infected cells showed microvillus-like extensions characteristic of Zipper-like structure, engulfing PagN-coated beads and E. coli expressing PagN, as observed during Rck-mediated internalization. CONCLUSIONS: Our results supply new comprehensions into T3SS-1-independent invasion mechanisms of S. Typhimurium and highly indicate that PagN induces a phosphatidylinositol 3-kinase signaling pathway, leading to a Zipper-like entry mechanism as the Salmonella outer membrane protein Rck.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/genética , Linhagem Celular , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Camundongos , Infecções por Salmonella/genética , Infecções por Salmonella/metabolismo , Salmonella typhimurium/genética , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
3.
Environ Microbiol ; 20(9): 3246-3260, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29921019

RESUMO

Carriage of Salmonella is often associated with a high level of bacterial excretion and generally occurs after a short systemic infection. However, we do not know whether this systemic infection is required or whether the carrier-state corresponds to continuous reinfection or real persistence in caecal tissue. The use of a Salmonella Enteritidis bamB mutant demonstrated that a carrier-state could be obtained in chicken in the absence of systemic infection. The development of a new infection model in isolator showed that a marked decrease in animal reinfection and host-to-host transmission between chicks led to a heterogeneity of S. Enteritidis excretion and colonization contrary to what was observed in cages. This heterogeneity of infection was characterized by the presence of super-shedders, which constantly disseminated Salmonella to the low-shedder chicks, mainly through airborne movements of contaminated dust particles. The presence of super-shedders, in the absence of host-to-host transmission, demonstrated that constant reinfection was not required to induce a carrier-state. Finally, our results suggest that low-shedder chicks do not have a higher capability to destroy Salmonella but instead can block initial Salmonella colonization. This new paradigm opens new avenues to improve understanding of the carrier-state mechanisms and to define new strategies to control Salmonella infections.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


Assuntos
Derrame de Bactérias , Portador Sadio/microbiologia , Galinhas/microbiologia , Doenças das Aves Domésticas/microbiologia , Salmonella enteritidis , Animais , Ceco/microbiologia , Infecção Hospitalar , Salmonelose Animal/microbiologia
4.
Mol Microbiol ; 94(2): 254-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25080967

RESUMO

One important step for the pathogenesis of Salmonella is its ability to penetrate host cells. Recently, a new entry system involving the outer membrane protein Rck has been characterized. Previous studies have shown that the pefI-srgC locus, which contains rck, was regulated by the temperature and SdiA, the transcriptional regulator of quorum sensing in Salmonella. To decipher the regulation of rck by SdiA, we first confirmed the operon organization of the pefI-srgC locus. Using plasmid-based transcriptional fusions, we showed that only the predicted distal promoter upstream of pefI, PefIP2, displays an SdiA- and acyl-homoserine lactones-dependent activity while the predicted proximal PefIP1 promoter exhibits a very low activity independent on SdiA in our culture conditions. A direct and specific interaction of SdiA with this PefIP2 region was identified using electrophoretic mobility shift assays and surface plasmon resonance studies. We also observed that Rck expression is negatively regulated by the nucleoid-associated H-NS protein at both 25°C and 37°C. This work is the first demonstration of a direct regulation of genes by SdiA in Salmonella and will help further studies designed to identify environmental conditions required for Rck expression and consequently contribute to better characterize the role of this invasin in vivo.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Salmonella typhimurium/genética , Transativadores/metabolismo , Fatores de Virulência/biossíntese , Fusão Gênica Artificial , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Ordem dos Genes , Genes Bacterianos , Genes Reporter , Regiões Promotoras Genéticas , Ligação Proteica , Percepção de Quorum , Salmonella typhimurium/fisiologia , Ressonância de Plasmônio de Superfície , Temperatura , Fatores de Virulência/genética
5.
Vet Res ; 45: 81, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25175996

RESUMO

Salmonella Gallinarum and Salmonella Enteritidis are genetically closely related however associated with different pathologies. Several studies have suggested that S. Gallinarum is less invasive in vitro than S. Enteritidis. In this study we confirm that the S. Gallinarum strains tested were much less invasive than the S. Enteritidis strains tested in cells of avian or human origin. In addition, the S. Gallinarum T3SS-1-dependent ability to invade host cells was delayed by two to three hours compared to S. Enteritidis, indicating that T3SS-1-dependent entry is less efficient in S. Gallinarum than S. Enteritidis. This was neither due to a decreased transcription of T3SS-1 related genes when bacteria come into contact with cells, as transcription of hilA, invF and sipA was similar to that observed for S. Enteritidis, nor to a lack of functionality of the S. Gallinarum T3SS-1 apparatus as this apparatus was able to secrete and translocate effector proteins into host cells. In contrast, genome comparison of four S. Gallinarum and two S. Enteritidis strains revealed that all S. Gallinarum genomes displayed the same point mutations in each of the main T3SS-1 effector genes sipA, sopE, sopE2, sopD and sopA.


Assuntos
Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Infecções por Salmonella/microbiologia , Salmonella enterica/fisiologia , Salmonella enterica/patogenicidade , Salmonella enteritidis/fisiologia , Salmonella enteritidis/patogenicidade , Animais , Aderência Bacteriana , Linhagem Celular , Linhagem Celular Tumoral , Galinhas , Humanos , Salmonella enterica/genética , Salmonella enteritidis/genética
6.
J Infect Dis ; 207(5): 794-802, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23230062

RESUMO

BACKGROUND: Fluoroquinolone (FQ) resistance is increasing worldwide among Salmonella species. Among the mechanisms involved, increased efflux via the tripartite AcrAB-TolC efflux system is mainly modulated through control of expression via the ramRA regulatory locus gene products. Interestingly, in some reference strains these have also been experimentally shown to regulate cell invasion-related genes of the type III secretion system 1 (T3SS-1). In this study, we investigated whether natural mutations occurring in this locus in FQ-resistant S. enterica serovar Typhimurium epidemic clones resulted in the same effects. METHODS: Quantitative reverse transcription polymerase chain reaction and cell invasion assays were used to study 3 clinical FQ-resistant S. Typhimurium isolates representative of the DT104 and DT204 epidemic clones. For comparison, 3 control reference quinolone-susceptible strains were included. RESULTS: As previously shown, the investigated mutations altering RamR or its DNA-binding site increased expression of efflux genes dependently on ramA. However, the decreased expression of T3SS-1 genes previously reported was not always observed and seemed to be dependent on the genetic background of the FQ-resistant isolate. Indeed, a ramA-dependent decreased invasion of intestinal epithelial cells was only observed for a particular clinical ramR mutant. CONCLUSIONS: ramRA mutations occurring in clinical FQ-resistant S. Typhimurium isolates may negatively modulate their invasiveness but this is strain-dependent.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Fluoroquinolonas/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Repressoras/genética , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Transativadores/genética , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Perfilação da Expressão Gênica , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/metabolismo , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/isolamento & purificação , Transativadores/metabolismo , Virulência , Fatores de Virulência/metabolismo
7.
Open Biol ; 14(1): 230312, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38228171

RESUMO

The infectious process of bacteria of the genus Salmonella requires the finely regulated use of various virulence factors. Among them, the type 3 secretion system-1 (T3SS-1) and the Rck and PagN invasins are involved in the internalization of the pathogen within eukaryotic cells, but their precise role in the host and in the pathogenic process is still poorly understood. In this study, we aimed to determine the kinetics of expression of these entry factors in a typhoid fever-like and a gastroenteritis model in mice by in vivo imaging using bioluminescent Salmonella Typhimurium reporter strains carrying chromosomal transcriptional fusions. Only pagN and T3SS-1 transcription has been clearly identified. Independently of the pathological model, the caecum was identified as the main transcription site of both pagN and the T3SS-1-encoding gene both at early and late stages of the infection. An intense transcription of pagN was also observed in deep organs in the typhoid fever-like model, while that of T3SS-1 remained quite sporadic in these organs, and mainly focused on the intestine all along the infection. This work will help to understand the respective role of these entry factors at the cellular level in the pathogenesis of Salmonella in vivo.


Assuntos
Febre Tifoide , Animais , Camundongos , Modelos Animais de Doenças , Salmonella typhimurium/genética , Intestinos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
8.
Plants (Basel) ; 13(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38337947

RESUMO

Plants may harbor the human pathogen Salmonella enterica. Interactions between S. enterica and different plant species have been studied in individual reports. However, disparities arising from the distinct experimental conditions may render a meaningful comparison very difficult. This study explored interaction patterns between different S. enterica strains including serovars Typhimurium 14028s and LT2 and serovar Senftenberg, and different plants (Arabidopsis, lettuce, and tomato) in one approach. Better persistence of S. enterica serovar Typhimurium strains was observed in all tested plants, whereas the resulting symptoms varied depending on plant species. Genes encoding pathogenesis-related proteins were upregulated in plants inoculated with Salmonella. Furthermore, transcriptome of tomato indicated dynamic responses to Salmonella, with strong and specific responses already 24 h after inoculation. By comparing with publicly accessible Arabidopsis and lettuce transcriptome results generated in a similar manner, constants and variables were displayed. Plants responded to Salmonella with metabolic and physiological adjustments, albeit with variability in reprogrammed orthologues. At the same time, Salmonella adapted to plant leaf-mimicking media with changes in biosynthesis of cellular components and adjusted metabolism. This study provides insights into the Salmonella-plant interaction, allowing for a direct comparison of responses and adaptations in both organisms.

9.
J Microbiol Methods ; 208: 106724, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37054820

RESUMO

Salmonella enterica in agricultural environments has become an important concern, due to its potential transmission to humans and the associated public health risks. To identify genes contributing to Salmonella adaptation to such environments, transposon sequencing has been used in recent years. However, isolating Salmonella from atypical hosts, such as plant leaves, can pose technical challenges due to low bacterial content and the difficulty to separate an adequate number of bacteria from host tissues. In this study, we describe a modified methodology using a combination of sonication and filtration to recover S. enterica cells from lettuce leaves. We successfully recovered over a total of 3.5 × 106Salmonella cells in each biological replicate from two six-week old lettuce leaves, 7 days after infiltration with a Salmonella suspension of 5 × 107 colony forming units (CFU)/mL. Moreover, we have developed a dialysis membrane system as an alternative method for recovering bacteria from culture medium, mimicking a natural environment. Inoculating 107 CFU/mL of Salmonella into the media based on plant (lettuce and tomato) leaf and diluvial sand soil, a final concentration of 109.5 and 108.5 CFU/mL was obtained, respectively. One millilitre of the bacterial suspension after 24 h incubation at 28 °C using 60 rpm agitation was pelleted, corresponding to 109.5 and 108.5 cells from leaf- or soil-based media. The recovered bacterial population, from both lettuce leaves and environment-mimicking media, can adequately cover a presumptive library density of 106 mutants. In conclusion, this protocol provides an effective method to recover a Salmonella transposon sequencing library from in planta and in vitro systems. We expect this novel technique to foster the study of Salmonella in atypical hosts and environments, as well as other comparable scenarios.


Assuntos
Salmonella enterica , Humanos , Salmonella enterica/genética , Lactuca/microbiologia , Sonicação , Contagem de Colônia Microbiana , Diálise Renal , Salmonella , Folhas de Planta/microbiologia , Solo , Microbiologia de Alimentos
10.
Microbiol Resour Announc ; 12(11): e0036523, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37795997

RESUMO

Salmonella enterica is an important foodborne pathogen. Here, we present the construction and characterization of a high-density transposon sequencing library of the Salmonella Typhimurium ATCC 14028 strain. Essential, advantageous, and disadvantageous genes for growth in rich culture medium were identified on the chromosome and the pSLT plasmid.

11.
J Bacteriol ; 194(9): 2385-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22493197

RESUMO

Salmonella enterica subsp. enterica serotype Senftenberg is an emerging serotype in poultry production which has been found to persist in animals and the farm environment. We report the genome sequence and annotation of the SS209 strain of S. Senftenberg, isolated from a hatchery, which was identified as persistent in broiler chickens.


Assuntos
Genoma Bacteriano , Salmonella enterica/classificação , Salmonella enterica/genética , Cromossomos Bacterianos , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular
12.
J Bacteriol ; 194(9): 2387-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22493198

RESUMO

Salmonella enterica subsp. enterica serotype Enteritidis is one of the major causes of gastroenteritis in humans due to consumption of poultry derivatives. Here we report the whole-genome sequence and annotation, including the virulence plasmid, of S. Enteritidis LA5, which is a chicken isolate used by numerous laboratories in virulence studies.


Assuntos
Genoma Bacteriano , Salmonella enterica/classificação , Salmonella enterica/genética , Cromossomos Bacterianos , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular
13.
Methods Mol Biol ; 2427: 249-264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619039

RESUMO

In chicken, Salmonella Enteritidis and Salmonella Typhimurium, the two main serotypes isolated in human infections, can persist in the host organism for many weeks and up to many years without causing any symptoms. This persistence generally occurs after a short systemic infection that may either lead to death of very young birds or develop into cecal asymptomatic persistence, which is often accompanied by a high level of bacterial excretion, facilitating Salmonella transmission to counterparts. Here we describe two models of chick infection. The first model reproduces well the poultry infection in farm flocks. Numerous reinfections and animal-animal recontaminations occur leading to a high level of cecal colonization and fecal excretion in all chicks in the flock, over several weeks. In the second model, these animal reinfections and recontaminations are hampered leading to heterogeneity of infection characterized by the presence of low and super-shedders. This model allows for more mechanistic studies of Salmonella/chicks interactions as animal recontaminations are lowered.


Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Animais , Portador Sadio/veterinária , Galinhas/microbiologia , Doenças das Aves Domésticas/microbiologia , Reinfecção , Salmonelose Animal/microbiologia , Salmonella enteritidis
14.
Methods Mol Biol ; 2427: 235-248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619038

RESUMO

Applications of bioluminescence for the in vivo study of pathogenic microorganisms are numerous, ranging from the quantification of virulence gene expression to measuring the effect of antimicrobial molecules on the colonization of tissues and organs by the pathogen. Most studies are performed in mice, but recent works demonstrate that this technique is applicable to larger animals like fish, guinea pigs, ferrets, and chickens. Here, we describe the construction and the utilization of a constitutively luminescent strain of Salmonella Typhimurium to monitor in vivo and ex vivo the colonization of mice in the gastroenteritis, typhoid fever, and asymptomatic carriage models of Salmonella infection.


Assuntos
Galinhas , Infecções por Salmonella , Animais , Modelos Animais de Doenças , Furões , Cobaias , Camundongos , Salmonella typhimurium/genética
15.
Microbiology (Reading) ; 157(Pt 3): 839-847, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21109565

RESUMO

Salmonella causes a wide range of diseases from acute gastroenteritis to systemic typhoid fever, depending on the host. To invade non-phagocytic cells, Salmonella has developed different mechanisms. The main invasion system requires a type III secretion system (T3SS) known as T3SS-1, which promotes a Trigger entry mechanism. However, other invasion factors have recently been described in Salmonella, including Rck and PagN, which were not expressed under our bacterial culture conditions. Based on these observations, we used adhesion and invasion assays to analyse the respective roles of Salmonella Enteritidis T3SS-1-dependent and -independent invasion processes at different times of infection. Diverse cell lines and cell types were tested, including endothelial, epithelial and fibroblast cells. We demonstrated that cell susceptibility to the T3SS-1-independent entry differs by a factor of nine between the most and the least permissive cell lines tested. In addition, using scanning electron and confocal microscopy, we showed that T3SS-1-independent entry into cells was characterized by a Trigger-like alteration, as for the T3SS-1-dependent entry, and also by Zipper-like cellular alteration. Our results demonstrate for what is believed to be the first time that Salmonella can induce Trigger-like entry independently of T3SS-1 and can induce Zipper-like entry independently of Rck. Overall, these data open new avenues for discovering new invasion mechanisms in Salmonella.


Assuntos
Proteínas de Bactérias/metabolismo , Células Endoteliais/microbiologia , Células Epiteliais/microbiologia , Fibroblastos/microbiologia , Especificidade de Hospedeiro , Salmonella enteritidis/patogenicidade , Células 3T3 , Actinas/metabolismo , Animais , Aderência Bacteriana/fisiologia , Sistemas de Secreção Bacterianos/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/microbiologia , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Células HT29 , Humanos , Camundongos , Microscopia Confocal , Salmonella enteritidis/metabolismo , Salmonella enteritidis/fisiologia
16.
Microbiol Spectr ; 9(2): e0145721, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34704781

RESUMO

The rck open reading frame (ORF) on the pefI-srgC operon encodes an outer membrane protein responsible for invasion of nonphagocytic cell lines and resistance to complement-mediated killing. Until now, the rck ORF was only detected on the virulence plasmids of three serovars of Salmonella subsp. enterica (i.e., Bovismorbificans, Enteritidis, and Typhimurium). The increasing number of Salmonella genome sequences allowed us to use a combination of reference sequences and whole-genome multilocus sequence typing (wgMLST) data analysis to probe the presence of the operon and of rck in a wide array of isolates belonging to all Salmonella species and subspecies. We established the presence of partial or complete operons in 61 subsp. enterica serovars as well as in 4 other subspecies with various syntenies and frequencies. The rck ORF itself was retrieved in 36 subsp. enterica serovars and in two subspecies with either chromosomal or plasmid-borne localization. It displays high conservation of its sequence within the genus, and we demonstrated that most of the allelic variations identified did not alter the virulence properties of the protein. However, we demonstrated the importance of the residue at position 38 (at the level of the first extracellular loop of the protein) in the invasin function of Rck. Altogether, our results highlight that rck is not restricted to the three formerly identified serovars and could therefore have a more important role in virulence than previously expected. Moreover, this work raises questions about the mechanisms involved in rck acquisition and about virulence plasmid distribution and evolution. IMPORTANCE The foodborne pathogen Salmonella is responsible for a wide variety of pathologies depending on the infected host, the infecting serovars, and its set of virulence factors. However, the implication of each of these virulence factors and their role in the specific host-pathogen interplay are not fully understood. The significance of our research is in determining the distribution of one of these factors, the virulence plasmid-encoded invasin and resistance to complement killing protein Rck. In addition to providing elements of reflection concerning the mechanisms of acquisition of specific virulence genes in certain serotypes, this work will help to understand the role of Rck in the pathogenesis of Salmonella.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas do Sistema Complemento/imunologia , Infecções por Salmonella/microbiologia , Salmonella enterica/genética , Salmonella typhimurium/genética , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Humanos , Óperon , Plasmídeos/genética , Plasmídeos/imunologia , Infecções por Salmonella/imunologia , Salmonella enterica/imunologia , Salmonella enterica/patogenicidade , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Alinhamento de Sequência , Virulência
17.
Vet Immunol Immunopathol ; 220: 109989, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31841890

RESUMO

Salmonella is a genus of Gram-negative bacteria in the Enterobacteriaceae family causing various illnesses. The ability of the different serovars of Salmonella enterica subsp. enterica to infect a host and to induce pathology relies in part on their cellular and molecular interactions with the intestinal epithelium. In the current study, an in vitro approach using non-polarized or polarized IPEC-1 porcine intestinal epithelial cells were used in order to assess the relation between adhesion, invasion, and induction of the immune response as a function of the serotype of Salmonella. Five serovars, Choleraesuis (host-adapted), Typhimurium (ubiquitous), Typhisuis (host-restricted), which are relevant for pig infection, and Dublin and Gallinarum, which are host-restricted or host-adapted, were studied. A strong variation was observed in the percentages of adhesion and invasion amongst the S. enterica serovars used to interact with the non-polarized and polarized cells. Subsequently, differences were identified between serovars in terms of immune response induced. Serovars Typhimurium and Typhisuis induced a strong innate immune response four and half hours after the beginning of cell stimulation while Choleraesuis, Gallinarum, and Dublin did not. A strong inflammatory response could limit the spread of the porcine serovars to the gut while, with a weak response, bacteria may not be constrained by the immune response enabling severe systemic diseases. Different repertoires of adhesion factors and of secreted protein effectors between Salmonella serovars interacting with IPEC-1 cells probably explains the differences in their early pathogenic behaviours.


Assuntos
Aderência Bacteriana , Células Epiteliais/imunologia , Imunidade Inata , Mucosa Intestinal/imunologia , Salmonella/classificação , Animais , Linhagem Celular , Polaridade Celular , Células Epiteliais/microbiologia , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Sorogrupo , Suínos
18.
Microb Biotechnol ; 13(5): 1611-1630, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32639676

RESUMO

Heterogeneity of infection and extreme shedding patterns are common features of animal infectious diseases. Individual hosts that are super-shedders are key targets for control strategies. Nevertheless, the mechanisms associated with the emergence of super-shedders remain largely unknown. During chicken salmonellosis, a high heterogeneity of infection is observed when animal-to-animal cross-contaminations and reinfections are reduced. We hypothesized that unlike super-shedders, low-shedders would be able to block the first Salmonella colonization thanks to a different gut microbiota. The present study demonstrates that (i) axenic and antibiotic-treated chicks are more prone to become super-shedders; (ii) super or low-shedder phenotypes can be acquired through microbiota transfer; (iii) specific gut microbiota taxonomic features determine whether the chicks develop a low- and super-shedder phenotype after Salmonella infection in isolator; (iv) partial protection can be conferred by inoculation of four commensal bacteria prior to Salmonella infection. This study demonstrates the key role plays by gut microbiota composition in the heterogeneity of infection and pave the way for developing predictive biomarkers and protective probiotics.


Assuntos
Escherichia coli O157 , Microbioma Gastrointestinal , Animais , Derrame de Bactérias , Galinhas , Fenótipo , Salmonella
19.
BMC Immunol ; 10: 4, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19166592

RESUMO

BACKGROUND: Normal mammary gland contains an extravascular population of B lymphoblasts, precursors of the immunoglobulin plasma cells that play a key role in the passive protection of neonates by secreting immunoglobulins to colostrum and milk. We investigated the presence of chemoattractants in the milk by analysing the chemoattractant activity of various fractions of this secretion. Milk chemoattractants are potentially involved in the recruitment of lymphocytes from the maternal bloodstream in lactating mammary glands. RESULTS: The dilution-related lymphoid cell chemoattraction of whey was associated with a < 10 kDa ultrafiltrate. Active fractions were purified by reverse-phase high performance liquid chromatography. Two peptides of 2.7 kDa (DMREANYKNSDKYFHARGNYDAA) and 1 kDa (RPPGLPDKY) were identified as fragments of the SAA protein family, tentatively identified as SAA2. Only the 2.7 kDa synthetic peptide displayed chemotactic activity, at two different optimal concentrations. At the lower concentration (3.7 nM), it attracted B-cell lymphoblasts, whereas at the higher (3.7 microM), it attracted B lymphocytes. Then, the SAA mRNA expression was analysed and we observed more SAA transcripts during lactation than gestation. CONCLUSION: These data are consistent with the SAA23-45 fragment being involved in preplasma B-cell recruitment to the mammary gland and resultant benefit to the neonate.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Leite/metabolismo , Peptídeos/metabolismo , Proteína Amiloide A Sérica/metabolismo , Sequência de Aminoácidos , Animais , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Linhagem Celular , Movimento Celular/imunologia , Fracionamento Químico , Feminino , Lactação/imunologia , Glândulas Mamárias Animais/metabolismo , Espectrometria de Massas , Leite/química , Proteínas do Leite/imunologia , Proteínas do Leite/metabolismo , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/imunologia , Proteína Amiloide A Sérica/química , Proteína Amiloide A Sérica/imunologia , Suínos , Porco Miniatura , Proteínas do Soro do Leite
20.
Virulence ; 10(1): 849-867, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31661351

RESUMO

Fimbriae play an important role in adhesion and are therefore essential for the interaction of bacteria with the environments they encounter. Most of them are expressed in vivo but not in vitro, thus making difficult the full characterization of these fimbriae. Here, we characterized the silencing of plasmid-encoded fimbriae (Pef) expression, encoded by the pef operon, in the worldwide pathogen Salmonella Typhimurium. We demonstrated that the nucleoid-associated proteins H-NS and Hha, and their respective paralogs StpA and YdgT, negatively regulate at pH 5.1 and pH 7.1 the transcription of the pef operon. Two promoters, PpefB and PpefA, direct the transcription of this operon. All the nucleoid-associated proteins silence the PpefB promoter and H-NS also targets the PpefA promoter. While Hha and YdgT are mainly considered as acting primarily through H-NS to modulate gene transcription, our results strongly suggest that Hha and YdgT silence pef transcription at acidic pH either by interacting with StpA or independently of H-NS and StpA. We also confirmed the previously described post-transcriptional repression of Pef fimbriae by CsrA titration via the fim mRNA and CsrB and CsrC sRNA. Finally, among all these regulators, H-NS clearly appeared as the major repressor of Pef expression. These results open new avenues of research to better characterize the regulation of these bacterial adhesive proteins and to clarify their role in the virulence of pathogens.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Proteínas Repressoras/genética , Salmonella typhimurium/genética , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares/genética , Óperon , Regiões Promotoras Genéticas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA