Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Bacteriol ; 196(19): 3441-51, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25049093

RESUMO

The cell envelope of Mycobacterium tuberculosis contains glycans and lipids of peculiar structure that play prominent roles in the biology and pathogenesis of tuberculosis. Consequently, the chemical structure and biosynthesis of the cell wall have been intensively investigated in order to identify novel drug targets. Here, we validate that the function of phosphatidyl-myo-inositol mannosyltransferase PimA is vital for M. tuberculosis in vitro and in vivo. PimA initiates the biosynthesis of phosphatidyl-myo-inositol mannosides by transferring a mannosyl residue from GDP-Man to phosphatidyl-myo-inositol on the cytoplasmic side of the plasma membrane. To prove the essential nature of pimA in M. tuberculosis, we constructed a pimA conditional mutant by using the TetR-Pip off system and showed that downregulation of PimA expression causes bactericidality in batch cultures. Consistent with the biochemical reaction catalyzed by PimA, this phenotype was associated with markedly reduced levels of phosphatidyl-myo-inositol dimannosides, essential structural components of the mycobacterial cell envelope. In addition, the requirement of PimA for viability was clearly demonstrated during macrophage infection and in two different mouse models of infection, where a dramatic decrease in viable counts was observed upon silencing of the gene. Notably, depletion of PimA resulted in complete clearance of the mouse lungs during both the acute and chronic phases of infection. Altogether, the experimental data highlight the importance of the phosphatidyl-myo-inositol mannoside biosynthetic pathway for M. tuberculosis and confirm that PimA is a novel target for future drug discovery programs.


Assuntos
Proteínas de Bactérias/metabolismo , Manosiltransferases/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose/microbiologia , Animais , Proteínas de Bactérias/genética , Feminino , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Manosiltransferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Fosfatidilinositóis/biossíntese
2.
Antimicrob Agents Chemother ; 57(6): 2506-10, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23507276

RESUMO

Beta-lactams, in combination with beta-lactamase inhibitors, are reported to have activity against Mycobacterium tuberculosis bacteria growing in broth, as well as inside the human macrophage. We tested representative beta-lactams belonging to 3 different classes for activity against replicating M. tuberculosis in broth and nonreplicating M. tuberculosis under hypoxia, as well as against streptomycin-starved M. tuberculosis strain 18b (ss18b) in the presence or absence of clavulanate. Most of the combinations showed bactericidal activity against replicating M. tuberculosis, with up to 200-fold improvement in potency in the presence of clavulanate. None of the combinations, including those containing meropenem, imipenem, and faropenem, killed M. tuberculosis under hypoxia. However, faropenem- and meropenem-containing combinations killed strain ss18b moderately. We tested the bactericidal activities of meropenem-clavulanate and amoxicillin-clavulanate combinations in the acute and chronic aerosol infection models of tuberculosis in BALB/c mice. Based on pharmacokinetic/pharmacodynamic indexes reported for beta-lactams against other bacterial pathogens, a cumulative percentage of a 24-h period that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (%TMIC) of 20 to 40% was achieved in mice using a suitable dosing regimen. Both combinations showed marginal reduction in lung CFU compared to the late controls in the acute model, whereas both were inactive in the chronic model.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio , Antibacterianos , Ácido Clavulânico , Mycobacterium tuberculosis/efeitos dos fármacos , Tienamicinas , Tuberculose Pulmonar/tratamento farmacológico , beta-Lactamas , Combinação Amoxicilina e Clavulanato de Potássio/administração & dosagem , Combinação Amoxicilina e Clavulanato de Potássio/farmacocinética , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/uso terapêutico , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ácido Clavulânico/administração & dosagem , Ácido Clavulânico/farmacocinética , Ácido Clavulânico/farmacologia , Ácido Clavulânico/uso terapêutico , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Humanos , Meropeném , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/normas , Mycobacterium tuberculosis/crescimento & desenvolvimento , Estreptomicina/farmacologia , Tienamicinas/administração & dosagem , Tienamicinas/farmacocinética , Tienamicinas/farmacologia , Tienamicinas/uso terapêutico , Resultado do Tratamento , Tuberculose Pulmonar/microbiologia , beta-Lactamas/administração & dosagem , beta-Lactamas/farmacocinética , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico
3.
Antimicrob Agents Chemother ; 56(6): 3054-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22470118

RESUMO

Coadministration of moxifloxacin and rifampin was evaluated in a murine model of Mycobacterium tuberculosis pulmonary infection to determine whether the finding of antagonism documented in a hollow-fiber infection model could be recapitulated in vivo. Colony counts were followed in a no-treatment control group, groups administered moxifloxacin or rifampin monotherapy, and a group administered a combination of the two agents. Following 18 days of once-daily oral administration to mice infected with M. tuberculosis, there was a reduction in the plasma exposure to rifampin that decreased further when rifampin was coadministered with moxifloxacin. Pharmacodynamic analysis demonstrated a mild antagonistic interaction between moxifloxacin and rifampin with respect to cell kill in the mouse model for tuberculosis (TB). No emergence of resistance was noted over 28 days of therapy, even with monotherapy. This was true even though one of the agents in the combination (moxifloxacin) induces error-prone replication. The previously noted antagonism with respect to cell kill shown in the hollow-fiber infection model was recapitulated in the murine TB lung model, although to a lesser extent.


Assuntos
Antituberculosos/uso terapêutico , Compostos Aza/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Quinolinas/uso terapêutico , Rifampina/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico , Animais , Antituberculosos/administração & dosagem , Antituberculosos/farmacocinética , Compostos Aza/administração & dosagem , Compostos Aza/farmacocinética , Fluoroquinolonas , Camundongos , Camundongos Endogâmicos BALB C , Moxifloxacina , Quinolinas/administração & dosagem , Quinolinas/farmacocinética , Rifampina/administração & dosagem , Rifampina/farmacocinética , Tuberculose Pulmonar/microbiologia
4.
Tuberculosis (Edinb) ; 94(3): 282-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24629633

RESUMO

Robust and physiologically relevant infection models are required to investigate pharmacokinetic-pharmacodynamic (PK/PD) correlations for anti-tuberculosis agents at preclinical discovery. We have validated an inhalation-based rat infection model of tuberculosis harbouring mycobacteria in a replicating state, that is suitable for investigating pharmacokinetics and drug action of anti-tubercular agents. A reproducible and actively replicating lung infection was established in Wistar rats by inhalation of a series of graded inocula of Mycobacterium tuberculosis. Following an initial instillation of ∼10(5) log10 CFU/lung, M. tuberculosis grew logarithmically for the first 3 weeks, and then entered into a chronic phase with no net increase in pulmonary bacterial loads. Dose response of front-line anti-TB drugs was investigated following pharmacokinetic measurements in the plasma of infected rats. Rifampicin, Isoniazid, and Ethambutol dosed per orally exhibited bactericidality and good dose response with maximal effect of 5.66, 4.66, and 4.80 log10 CFU reductions in the lungs, respectively. In contrast, Pyrazinamide was merely bacteriostatic with 1.92 log10 CFU/lung reduction and did not reduce the bacterial burden beyond the initial bacterial loads present at beginning of treatment in spite of high Pyrazinamide blood levels. Rat infection model with actively replicating bacilli provides a physiologically distinct and pharmacologically relevant model that can be exploited to distinguish investigational compounds in to bacteriostatic or bactericidal scaffolds. We propose that this rat infection model though need more drug substance, can be used in early discovery settings to investigate pharmacology of novel anti-tubercular agents for the treatment of active pulmonary tuberculosis.


Assuntos
Antituberculosos/farmacocinética , Tuberculose Pulmonar/tratamento farmacológico , Animais , Antituberculosos/administração & dosagem , Carga Bacteriana/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Masculino , Mycobacterium tuberculosis , Ratos Wistar , Resultado do Tratamento
5.
J Med Chem ; 56(23): 9701-8, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24215368

RESUMO

We report 1,4-azaindoles as a new inhibitor class that kills Mycobacterium tuberculosis in vitro and demonstrates efficacy in mouse tuberculosis models. The series emerged from scaffold morphing efforts and was demonstrated to noncovalently inhibit decaprenylphosphoryl-ß-D-ribose2'-epimerase (DprE1). With "drug-like" properties and no expectation of pre-existing resistance in the clinic, this chemical class has the potential to be developed as a therapy for drug-sensitive and drug-resistant tuberculosis.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Indóis/síntese química , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Oxirredutases do Álcool , Animais , Antituberculosos/farmacocinética , Antituberculosos/uso terapêutico , Descoberta de Drogas , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Indóis/farmacocinética , Indóis/farmacologia , Indóis/uso terapêutico , Camundongos , Ratos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA