Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(17): e2302152120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068249

RESUMO

The primary antigenic and virulence determinant of the human malaria parasite Plasmodium falciparum is a variant surface protein called PfEMP1. Different forms of PfEMP1 are encoded by a multicopy gene family called var, and switching between active genes enables the parasites to evade the antibody response of their human hosts. var gene switching is key for the maintenance of chronic infections; however, what controls switching is unknown, although it has been suggested to occur at a constant frequency with little or no environmental influence. var gene transcription is controlled epigenetically through the activity of histone methyltransferases (HMTs). Studies in model systems have shown that metabolism and epigenetic control of gene expression are linked through the availability of intracellular S-adenosylmethionine (SAM), the principal methyl donor in biological methylation modifications, which can fluctuate based on nutrient availability. To determine whether environmental conditions and changes in metabolism can influence var gene expression, P. falciparum was cultured in media with altered concentrations of nutrients involved in SAM metabolism. We found that conditions that influence lipid metabolism induce var gene switching, indicating that parasites can respond to changes in their environment by altering var gene expression patterns. Genetic modifications that directly modified expression of the enzymes that control SAM levels similarly led to profound changes in var gene expression, confirming that changes in SAM availability modulate var gene switching. These observations directly challenge the paradigm that antigenic variation in P. falciparum follows an intrinsic, programed switching rate, which operates independently of any external stimuli.


Assuntos
Malária Falciparum , Parasitos , Animais , Humanos , Plasmodium falciparum/metabolismo , Parasitos/metabolismo , Regulação da Expressão Gênica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/parasitologia , Variação Antigênica/genética
2.
Clin Infect Dis ; 65(7): 1222-1225, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28541469

RESUMO

Babesiosis treatment failures with standard therapy have been reported, but the molecular mechanisms are not well understood. We describe the emergence of atovaquone and azithromycin resistance associated with mutations in the binding regions of the target proteins of both drugs during treatment of an immunosuppressed patient with relapsing babesiosis.


Assuntos
Antiprotozoários/uso terapêutico , Atovaquona/uso terapêutico , Azitromicina/uso terapêutico , Babesiose/tratamento farmacológico , Resistência a Medicamentos/efeitos dos fármacos , Leucemia Linfocítica Crônica de Células B/parasitologia , Rituximab/uso terapêutico , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Babesia microti/efeitos dos fármacos , Humanos , Masculino
3.
bioRxiv ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38496509

RESUMO

Chronic, asymptomatic malaria infections contribute substantially to disease transmission and likely represent the most significant impediment preventing malaria elimination and eradication. Plasmodium falciparum parasites evade antibody recognition through transcriptional switching between members of the var gene family, which encodes the major virulence factor and surface antigen on infected red blood cells. This process can extend infections for up to a year; however, infections have been documented to last for over a decade, constituting an unseen reservoir of parasites that undermine eradication and control efforts. How parasites remain immunologically "invisible" for such lengthy periods is entirely unknown. Here we show that in addition to the accepted paradigm of mono-allelic var gene expression, individual parasites can simultaneously express multiple var genes or enter a state in which little or no var gene expression is detectable. This unappreciated flexibility provides parasites with greater adaptive capacity than previously understood and challenges the dogma of mutually exclusive var gene expression. It also provides an explanation for the antigenically "invisible" parasites observed in chronic asymptomatic infections.

4.
Front Cell Dev Biol ; 10: 852239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350381

RESUMO

Cellular decision-making at the level of gene expression is a key process in the development and evolution of every organism. Variations in gene expression can lead to phenotypic diversity and the development of subpopulations with adaptive advantages. A prime example is the mutually exclusive activation of a single gene from within a multicopy gene family. In mammals, this ranges from the activation of one of the two immunoglobulin (Ig) alleles to the choice in olfactory sensory neurons of a single odorant receptor (OR) gene from a family of more than 1,000. Similarly, in parasites like Trypanosoma brucei, Giardia lamblia or Plasmodium falciparum, the process of antigenic variation required to escape recognition by the host immune system involves the monoallelic expression of vsg, vsp or var genes, respectively. Despite the importance of this process, understanding how this choice is made remains an enigma. The development of powerful techniques such as single cell RNA-seq and Hi-C has provided new insights into the mechanisms these different systems employ to achieve monoallelic gene expression. Studies utilizing these techniques have shown how the complex interplay between nuclear architecture, physical interactions between chromosomes and different chromatin states lead to single allele expression. Additionally, in several instances it has been observed that high-level expression of a single gene is preceded by a transient state where multiple genes are expressed at a low level. In this review, we will describe and compare the different strategies that organisms have evolved to choose one gene from within a large family and how parasites employ this strategy to ensure survival within their hosts.

5.
Elife ; 112022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36515978

RESUMO

Malaria parasites avoid immune clearance through their ability to systematically alter antigens exposed on the surface of infected red blood cells. This is accomplished by tightly regulated transcriptional control of individual members of a large, multicopy gene family called var and is the key to both the virulence and chronic nature of malaria infections. Expression of var genes is mutually exclusive and controlled epigenetically, however how large populations of parasites coordinate var gene switching to avoid premature exposure of the antigenic repertoire is unknown. Here, we provide evidence for a transcriptional network anchored by a universally conserved gene called var2csa that coordinates the switching process. We describe a structured switching bias that shifts overtime and could shape the pattern of var expression over the course of a lengthy infection. Our results provide an explanation for a previously mysterious aspect of malaria infections and shed light on how parasites possessing a relatively small repertoire of variant antigen-encoding genes can coordinate switching events to limit antigen exposure, thereby maintaining chronic infections.


Malaria causes severe illness and deaths in hundreds of thousands of people each year. Most of them are young children in Sub-Saharan Africa. The disease is transmitted when a mosquito carrying single-celled Plasmodium parasites bites a human, introducing the parasites into the bloodstream, where they enter red blood cells. When a red blood cell becomes infected, the parasite presents a protein on the cell's surface that the immune system can recognize to start fighting the infection. Immune cells then produce antibodies that flag infected cells for destruction, relieving the symptoms of the disease. To avoid being destroyed in this manner, the parasites repeatedly 'change' the protein that ends up on the surface of the red blood cells. With each change, the number of parasites rebounds, symptoms return, and the immune system must produce new antibodies. As the parasites and immune system battle it out, patients may experience repeated flare-ups of symptoms for well over a year. To change the protein that is presented on the surface of red blood cells, Plasmodium parasites switch the genes in the var gene family on and off one at a time. Each of these genes encodes a different surface protein, and the parasites may cycle through the entire var gene family during an infection. However, it remains a mystery how the millions of infecting parasites coordinate to produce the same surface protein each time. Zhang et al. show that a gene from Plasmodium parasites called var2csa is responsible for coordinating protein switching through a set pattern that allows the parasites to synchronize which protein they switch to next. Deleting the var2csa gene in malaria parasites blocks protein switching and disables this coordinated immune evasion tactic. Zhang et al.'s experiments provide new insights about protein switching in malaria parasites. Further research may help scientists characterize each step in the process and identify which steps can be targeted to treat malaria. While not a cure, treatments that disable protein switching could reduce the number of times patients relapse and relieve symptoms. More generally, the results of Zhang et al. describe a mechanism for coordinated gene expression that may be used in organisms other than Plasmodium, including humans.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum , Proteínas de Protozoários/metabolismo , Variação Antigênica/genética , Antígenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA