Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(25): 7857-62, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26056304

RESUMO

The default mode network (DMN) and semantic network (SN) are two of the most extensively studied systems, and both are increasingly used as clinical biomarkers in neurological studies. There are strong theoretical reasons to assume a relationship between the networks, as well as anatomical evidence that they might rely on overlapping cortical regions, such as the anterior temporal lobe (ATL) or angular gyrus (AG). Despite these strong motivations, the relationship between the two systems has received minimal attention. We directly compared the SN and DMN using a large (n = 69) distortion-corrected functional MRI (fMRI) dataset, spanning a range of semantic and nonsemantic tasks that varied input modality. The results showed that both networks fractionate depending on the semantic nature of the task, stimulus type, modality, and task difficulty. Furthermore, despite recent claims that both AG and ATL are semantic hubs, the two areas responded very differently, with results supporting the role of ATL, but not AG, in semantic representation. Specifically, the left ATL was positively activated for all semantic tasks, but deactivated during nonsemantic task performance. In contrast, the left AG was deactivated for all tasks, with the level of deactivation related to task difficulty. Thus, ATL and AG do not share a common interest in semantic tasks, but, rather, a common "disinterest" in nonsemantic tasks. The implications for the variability in the DMN, its cognitive coherence, and interpretation of resting-state fMRI data are discussed.


Assuntos
Semântica , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética
2.
Neuroimage ; 119: 272-85, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26119022

RESUMO

The interplay between attention and multisensory integration has proven to be a difficult question to tackle. There are almost as many studies showing that multisensory integration occurs independently from the focus of attention as studies implying that attention has a profound effect on integration. Addressing the neural expression of multisensory integration for attended vs. unattended stimuli can help disentangle this apparent contradiction. In the present study, we examine if selective attention to sound pitch influences the expression of audiovisual integration in both behavior and neural activity. Participants were asked to attend to one of two auditory speech streams while watching a pair of talking lips that could be congruent or incongruent with the attended speech stream. We measured behavioral and neural responses (fMRI) to multisensory stimuli under attended and unattended conditions while physical stimulation was kept constant. Our results indicate that participants recognized words more accurately from an auditory stream that was both attended and audiovisually (AV) congruent, thus reflecting a benefit due to AV integration. On the other hand, no enhancement was found for AV congruency when it was unattended. Furthermore, the fMRI results indicated that activity in the superior temporal sulcus (an area known to be related to multisensory integration) was contingent on attention as well as on audiovisual congruency. This attentional modulation extended beyond heteromodal areas to affect processing in areas classically recognized as unisensory, such as the superior temporal gyrus or the extrastriate cortex, and to non-sensory areas such as the motor cortex. Interestingly, attention to audiovisual incongruence triggered responses in brain areas related to conflict processing (i.e., the anterior cingulate cortex and the anterior insula). Based on these results, we hypothesize that AV speech integration can take place automatically only when both modalities are sufficiently processed, and that if a mismatch is detected between the AV modalities, feedback from conflict areas minimizes the influence of this mismatch by reducing the processing of the least informative modality.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Percepção da Altura Sonora/fisiologia , Percepção da Fala/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Adulto Jovem
3.
J Cogn Neurosci ; 25(11): 1824-50, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23859646

RESUMO

Semantic cognition requires a combination of semantic representations and executive control processes to direct activation in a task- and time-appropriate fashion [Jefferies, E., & Lambon Ralph, M. A. Semantic impairment in stroke aphasia versus semantic dementia: A case-series comparison. Brain, 129, 2132-2147, 2006]. We undertook a formal meta-analysis to investigate which regions within the large-scale semantic network are specifically associated with the executive component of semantic cognition. Previous studies have described in detail the role of left ventral pFC in semantic regulation. We examined 53 studies that contrasted semantic tasks with high > low executive requirements to determine whether cortical regions beyond the left pFC show the same response profile to executive semantic demands. Our findings revealed that right pFC, posterior middle temporal gyrus (pMTG) and dorsal angular gyrus (bordering intraparietal sulcus) were also consistently recruited by executively demanding semantic tasks, demonstrating patterns of activation that were highly similar to the left ventral pFC. These regions overlap with the lesions in aphasic patients who exhibit multimodal semantic impairment because of impaired regulatory control (semantic aphasia)-providing important convergence between functional neuroimaging and neuropsychological studies of semantic cognition. Activation in dorsal angular gyrus and left ventral pFC was consistent across all types of executive semantic manipulation, regardless of whether the task was receptive or expressive, whereas pMTG activation was only observed for manipulation of control demands within receptive tasks. Second, we contrasted executively demanding tasks tapping semantics and phonology. Our findings revealed substantial overlap between the two sets of contrasts within left ventral pFC, suggesting this region underpins domain-general control mechanisms. In contrast, we observed relative specialization for semantic control within pMTG as well as the most ventral aspects of left pFC (BA 47), consistent with our proposal of a distributed network underpinning semantic control.


Assuntos
Córtex Pré-Frontal/fisiologia , Lobo Temporal/fisiologia , Mapeamento Encefálico , Tomada de Decisões , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Tomografia por Emissão de Pósitrons , Desempenho Psicomotor/fisiologia , Semântica
4.
Hum Brain Mapp ; 34(5): 1148-62, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22576840

RESUMO

Fine surface texture is best discriminated by touch, in contrast to macro geometric features like shape. We used functional magnetic resonance imaging and a delayed match-to-sample task to investigate the neural substrate for working memory of tactile surface texture. Blindfolded right-handed males encoded the texture or location of up to four sandpaper stimuli using the dominant or non-dominant hand. They maintained the information for 10-12 s and then answered whether a probe stimulus matched the memory array. Analyses of variance with the factors Hand, Task, and Load were performed on the estimated percent signal change for the encoding and delay phase. During encoding, contralateral effects of Hand were found in sensorimotor regions, whereas Load effects were observed in bilateral postcentral sulcus (BA2), secondary somatosensory cortex (S2), pre-SMA, dorsolateral prefrontal cortex (dlPFC), and superior parietal lobule (SPL). During encoding and delay, Task effects (texture > location) were found in central sulcus, S2, pre-SMA, dlPFC, and SPL. The Task and Load effects found in hand- and modality-specific regions BA2 and S2 indicate involvement of these regions in the tactile encoding and maintenance of fine surface textures. Similar effects in hand- and modality-unspecific areas dlPFC, pre-SMA and SPL suggest that these regions contribute to the cognitive monitoring required to encode and maintain multiple items. Our findings stress both the particular importance of S2 for the encoding and maintenance of tactile surface texture, as well as the supramodal nature of parieto-frontal networks involved in cognitive control.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Percepção do Tato/fisiologia , Tato/fisiologia , Adulto , Análise de Variância , Encéfalo/irrigação sanguínea , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio , Estimulação Física , Tempo de Reação/fisiologia , Privação Sensorial/fisiologia , Adulto Jovem
5.
Healthcare (Basel) ; 11(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36981478

RESUMO

Over the last two decades, the functional role of the bilateral anterior temporal lobes (bATLs) has been receiving more attention. They have been associated with semantics and social concept processing, and are regarded as a core region for depression. In the past, the role of the ATL has often been overlooked in semantic models based on functional magnetic resonance imaging (fMRI) due to geometric distortions in the BOLD signal. However, previous work has unequivocally associated the bATLs with these higher-order cognitive functions following advances in neuroimaging techniques to overcome the geometric distortions. At the same time, the importance of the neural basis of conceptual knowledge in understanding mood disorders became apparent. Theoretical models of the neural basis of mood and anxiety disorders have been classically studied from the emotion perspective, without concentrating on conceptual processing. However, recent work suggests that the ATL, a brain region underlying conceptual knowledge, plays an essential role in mood and anxiety disorders. Patients with anxiety and depression often cope with self-blaming biases and guilt. The theory is that in order to experience guilt, the brain needs to access the related conceptual information via the ATL. This narrative review describes how aberrant interactions of the ATL with the fronto-limbic emotional system could underlie mood and anxiety disorders.

6.
J Cogn Neurosci ; 24(8): 1766-78, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22621260

RESUMO

Most contemporary theories of semantic memory assume that concepts are formed from the distillation of information arising in distinct sensory and verbal modalities. The neural basis of this distillation or convergence of information was the focus of this study. Specifically, we explored two commonly posed hypotheses: (a) that the human middle temporal gyrus (MTG) provides a crucial semantic interface given the fact that it interposes auditory and visual processing streams and (b) that the anterior temporal region-especially its ventral surface (vATL)-provides a critical region for the multimodal integration of information. By utilizing distortion-corrected fMRI and an established semantic association assessment (commonly used in neuropsychological investigations), we compared the activation patterns observed for both the verbal and nonverbal versions of the same task. The results are consistent with the two hypotheses simultaneously: Both MTG and vATL are activated in common for word and picture semantic processing. Additional planned, ROI analyses show that this result follows from two principal axes of convergence in the temporal lobe: both lateral (toward MTG) and longitudinal (toward the anterior temporal lobe).


Assuntos
Cognição/fisiologia , Imageamento por Ressonância Magnética/métodos , Semântica , Lobo Temporal/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Testes Neuropsicológicos
7.
Brain Struct Funct ; 223(9): 4023-4038, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30120553

RESUMO

Numerous neuroimaging studies have identified various brain networks using task-free analyses. While these networks undoubtedly support higher cognition, their precise functional characteristics are rarely probed directly. The frontal, temporal, and parietal lobes contain the majority of the tertiary association cortex, which are key substrates for higher cognition including executive function, language, memory, and attention. Accordingly, we established the cognitive signature of a set of contrastive brain networks on the main tertiary association cortices, identified in two task-independent datasets. Using graph-theory analysis, we revealed multiple networks across the frontal, temporal, and parietal cortex, derived from structural and functional connectivity. The patterns of network activity were then investigated using three task-active fMRI datasets to generate the functional profiles of the identified networks. We employed representational dissimilarity analysis on these functional data to quantify and compare the representational characteristics of the networks. Our results demonstrated that the topology of the task-independent networks was strongly associated with the patterns of network activity in the task-active fMRI. Our findings establish a direct relationship between the brain networks identified from task-free datasets and higher cognitive functions including cognitive control, language, memory, visuospatial function, and perception. Not only does this study support the widely held view that higher cognitive functions are supported by widespread, distributed cortical networks, but also it elucidates a methodological approach for formally establishing their relationship.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Cognição/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Adulto Jovem
8.
Brain Lang ; 126(3): 253-62, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23872285

RESUMO

Neuroimaging studies of audiovisual speech processing have exclusively addressed listeners' native language (L1). Yet, several behavioural studies now show that AV processing plays an important role in non-native (L2) speech perception. The current fMRI study measured brain activity during auditory, visual, audiovisual congruent and audiovisual incongruent utterances in L1 and L2. BOLD responses to congruent AV speech in the pSTS were stronger than in either unimodal condition in both L1 and L2. Yet no differences in AV processing were expressed according to the language background in this area. Instead, the regions in the bilateral occipital lobe had a stronger congruency effect on the BOLD response (congruent higher than incongruent) in L2 as compared to L1. According to these results, language background differences are predominantly expressed in these unimodal regions, whereas the pSTS is similarly involved in AV integration regardless of language dominance.


Assuntos
Percepção Auditiva/fisiologia , Idioma , Multilinguismo , Percepção da Fala/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA