Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(8): 1474-1488, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38956378

RESUMO

Natural killer (NK) cells are innate lymphoid cells (ILCs) contributing to immune responses to microbes and tumors. Historically, their classification hinged on a limited array of surface protein markers. Here, we used single-cell RNA sequencing (scRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to dissect the heterogeneity of NK cells. We identified three prominent NK cell subsets in healthy human blood: NK1, NK2 and NK3, further differentiated into six distinct subgroups. Our findings delineate the molecular characteristics, key transcription factors, biological functions, metabolic traits and cytokine responses of each subgroup. These data also suggest two separate ontogenetic origins for NK cells, leading to divergent transcriptional trajectories. Furthermore, we analyzed the distribution of NK cell subsets in the lung, tonsils and intraepithelial lymphocytes isolated from healthy individuals and in 22 tumor types. This standardized terminology aims at fostering clarity and consistency in future research, thereby improving cross-study comparisons.


Assuntos
Células Matadoras Naturais , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Células Matadoras Naturais/imunologia , Transcriptoma , Neoplasias/imunologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Tonsila Palatina/imunologia , Tonsila Palatina/citologia , Perfilação da Expressão Gênica , Pulmão/imunologia , Citocinas/metabolismo
2.
Immunity ; 57(1): 6-8, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38198854

RESUMO

Conventional natural killer (cNK) cells patrol the organism via circulation and invade tissues in response to infection or inflammation. In this issue of Immunity, Torcellan et al. report that circulating cNK cells are recruited into infected skin and differentiate into long-lived tissue-resident NK cells capable of mediating an accelerated response upon reinfection.


Assuntos
Inflamação , Células Matadoras Naturais , Humanos , Pele
3.
Immunity ; 57(6): 1360-1377.e13, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38821052

RESUMO

Limited infiltration and activity of natural killer (NK) and T cells within the tumor microenvironment (TME) correlate with poor immunotherapy responses. Here, we examined the role of the endonuclease Regnase-1 on NK cell anti-tumor activity. NK cell-specific deletion of Regnase-1 (Reg1ΔNK) augmented cytolytic activity and interferon-gamma (IFN-γ) production in vitro and increased intra-tumoral accumulation of Reg1ΔNK-NK cells in vivo, reducing tumor growth dependent on IFN-γ. Transcriptional changes in Reg1ΔNK-NK cells included elevated IFN-γ expression, cytolytic effectors, and the chemokine receptor CXCR6. IFN-γ induced expression of the CXCR6 ligand CXCL16 on myeloid cells, promoting further recruitment of Reg1ΔNK-NK cells. Mechanistically, Regnase-1 deletion increased its targets, the transcriptional regulators OCT2 and IκBζ, following interleukin (IL)-12 and IL-18 stimulation, and the resulting OCT2-IκBζ-NF-κB complex induced Ifng transcription. Silencing Regnase-1 in human NK cells increased the expression of IFNG and POU2F2. Our findings highlight NK cell dysfunction in the TME and propose that targeting Regnase-1 could augment active NK cell persistence for cancer immunotherapy.


Assuntos
Interferon gama , Células Matadoras Naturais , Microambiente Tumoral , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Animais , Interferon gama/metabolismo , Humanos , Camundongos , Microambiente Tumoral/imunologia , Camundongos Endogâmicos C57BL , Ribonucleases/metabolismo , Ribonucleases/genética , Camundongos Knockout , Transcrição Gênica , Linhagem Celular Tumoral , NF-kappa B/metabolismo
5.
Nature ; 626(8000): 727-736, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38383621

RESUMO

Natural killer (NK) cells are lymphocytes of the innate immune system. A key feature of NK cells is their ability to recognize a wide range of cells in distress, particularly tumour cells and cells infected with viruses. They combine both direct effector functions against their cellular targets and participate in the generation, shaping and maintenance of a multicellular immune response. As our understanding has deepened, several therapeutic strategies focused on NK cells have been conceived and are currently in various stages of development, from preclinical investigations to clinical trials. Here we explore in detail the complexity of NK cell biology in humans and highlight the role of these cells in cancer immunity. We also analyse the harnessing of NK cell immunity through immune checkpoint inhibitors, NK cell engagers, and infusions of preactivated or genetically modified, autologous or allogeneic NK cell products.


Assuntos
Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias , Humanos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Neoplasias/imunologia , Neoplasias/terapia , Imunidade Inata
6.
Nature ; 630(8018): 976-983, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867048

RESUMO

Interleukin (IL-)23 is a major mediator and therapeutic target in chronic inflammatory diseases that also elicits tissue protection in the intestine at homeostasis or following acute infection1-4. However, the mechanisms that shape these beneficial versus pathological outcomes remain poorly understood. To address this gap in knowledge, we performed single-cell RNA sequencing on all IL-23 receptor-expressing cells in the intestine and their acute response to IL-23, revealing a dominance of T cells and group 3 innate lymphoid cells (ILC3s). Unexpectedly, we identified potent upregulation of the immunoregulatory checkpoint molecule cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) on ILC3s. This pathway was activated by gut microbes and IL-23 in a FOXO1- and STAT3-dependent manner. Mice lacking CTLA-4 on ILC3s exhibited reduced regulatory T cells, elevated inflammatory T cells and more-severe intestinal inflammation. IL-23 induction of CTLA-4+ ILC3s was necessary and sufficient to reduce co-stimulatory molecules and increase PD-L1 bioavailability on intestinal myeloid cells. Finally, human ILC3s upregulated CTLA-4 in response to IL-23 or gut inflammation and correlated with immunoregulation in inflammatory bowel disease. These results reveal ILC3-intrinsic CTLA-4 as an essential checkpoint that restrains the pathological outcomes of IL-23, suggesting that disruption of these lymphocytes, which occurs in inflammatory bowel disease5-7, contributes to chronic inflammation.


Assuntos
Imunidade Inata , Inflamação , Interleucina-23 , Linfócitos , Animais , Feminino , Humanos , Masculino , Camundongos , Antígeno CTLA-4/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Microbioma Gastrointestinal , Inflamação/imunologia , Inflamação/patologia , Inflamação/metabolismo , Interleucina-23/imunologia , Intestinos/imunologia , Intestinos/patologia , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Análise da Expressão Gênica de Célula Única , Fator de Transcrição STAT3/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
7.
Nat Rev Immunol ; 24(7): 471-486, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38273127

RESUMO

There have been major advances in the immunotherapy of cancer in recent years, including the development of T cell engagers - antibodies engineered to redirect T cells to recognize and kill cancer cells - for the treatment of haematological malignancies. However, the field still faces several challenges to develop agents that are consistently effective in a majority of patients and cancer types, such as optimizing drug dose, overcoming treatment resistance and improving efficacy in solid tumours. A new generation of T cell-targeted molecules was developed to tackle these issues that are potentially more effective and safer. In addition, agents designed to engage the antitumour activities of other immune cells, including natural killer cells and myeloid cells, are showing promise and have the potential to treat a broader range of cancers.


Assuntos
Imunoterapia , Células Matadoras Naturais , Neoplasias , Linfócitos T , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Animais , Células Mieloides/imunologia
8.
Mucosal Immunol ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39137882

RESUMO

Group 3 innate lymphoid cells (ILC3s) are abundant in the developing or healthy intestine to critically support tissue homeostasis in response to microbial colonization. However, intestinal ILC3s are reduced during chronic infections, colorectal cancer, or inflammatory bowel disease (IBD), and the mechanisms driving these alterations remain poorly understood. Here we employed RNA sequencing of ILC3s from IBD patients and observed a significant upregulation of RIPK3, the central regulator of necroptosis, during intestinal inflammation. This was modeled in mice where we found that intestinal ILC3s express RIPK3, with conventional (c)ILC3s exhibiting high RIPK3 and low levels of pro-survival genes relative to lymphoid tissue inducer (LTi)-like ILC3s. ILC3-specific RIPK3 is promoted by gut microbiota, further upregulated following enteric infection, and dependent upon IL-23R and STAT3 signaling. However, lineage-specific deletion of RIPK3 revealed a redundant role in ILC3 survival, due to a blockade of RIPK3-mediated necroptosis by caspase 8, which was also activated in response to enteric infection. In contrast, lineage-specific deletion of caspase 8 resulted in loss of cILC3s from the healthy intestine and all ILC3 subsets during enteric infection, which increased pathogen burdens and gut inflammation. This function of caspase 8 required catalytic activity induced by TNF or TL1A and was dispensable if RIPK3 was simultaneously deleted. Caspase 8 activation and cell death were associated with increased Fas on ILC3s, and the Fas-FasL pathway was upregulated by cILC3s during enteric infection, which could restrain the abundance of intestinal ILC3s. Collectively, these data reveal that interpretation of key cytokine signals controls ILC3 survival following microbial challenge, and that an imbalance of these pathways, such as in IBD or across ILC3 subsets, provokes depletion of tissue-protective ILC3s from the inflamed intestine.

9.
iScience ; 26(12): 108570, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38162021

RESUMO

The unfolded protein response (UPR) aims to restore ER homeostasis under conditions of high protein folding load, a function primarily serving secretory cells. Additional, non-canonical UPR functions have recently been unraveled in immune cells. We addressed the function of the inositol-requiring enzyme 1 (IRE1) signaling branch of the UPR in NK cells in homeostasis and microbial challenge. Cell-intrinsic compound deficiency of IRE1 and its downstream transcription factor XBP1 in NKp46+ NK cells, did not affect basal NK cell homeostasis, or overall outcome of viral MCMV infection. However, mixed bone marrow chimeras revealed a competitive advantage in the proliferation of IRE1-sufficient Ly49H+ NK cells after viral infection. CITE-Seq analysis confirmed strong induction of IRE1 early upon infection, concomitant with the activation of a canonical UPR signature. Therefore, we conclude that IRE1/XBP1 activation is required during vigorous NK cell proliferation early upon viral infection, as part of a canonical UPR response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA