Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(10)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096615

RESUMO

Human hepatoma HepaRG cells express most drug metabolizing enzymes and constitute a pertinent in vitro alternative cell system to primary cultures of human hepatocytes in order to determine drug metabolism and evaluate the toxicity of xenobiotics. In this work, we established novel transgenic HepaRG cells transduced with lentiviruses encoding the reporter green fluorescent protein (GFP) transcriptionally regulated by promoter sequences of cytochromes P450 (CYP) 1A1/2, 2B6 and 3A4 genes. Here, we demonstrated that GFP-biosensor transgenes shared similar expression patterns with the corresponding endogenous CYP genes during proliferation and differentiation in HepaRG cells. Interestingly, differentiated hepatocyte-like HepaRG cells expressed GFP at higher levels than cholangiocyte-like cells. Despite weaker inductions of GFP expression compared to the strong increases in mRNA levels of endogenous genes, we also demonstrated that the biosensor transgenes were induced by prototypical drug inducers benzo(a)pyrene and phenobarbital. In addition, we used the differentiated biosensor HepaRG cells to evidence that pesticide mancozeb triggered selective cytotoxicity of hepatocyte-like cells. Our data demonstrate that these new biosensor HepaRG cells have potential applications in the field of chemicals safety evaluation and the assessment of drug hepatotoxicity.


Assuntos
Técnicas Biossensoriais , Citocromo P-450 CYP1A1/isolamento & purificação , Citocromo P-450 CYP2B6/isolamento & purificação , Citocromo P-450 CYP3A/isolamento & purificação , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP3A/genética , Proteínas de Fluorescência Verde/genética , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Lentivirus/genética , Taxa de Depuração Metabólica , Transgenes/genética
2.
Arch Toxicol ; 92(10): 3077-3091, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30151596

RESUMO

CYP2E1 activity is measured in vitro and in vivo via hydroxylation of the Chlorzoxazone (CHZ) producing the 6-hydroxychlorzoxazone (OH-CHZ) further metabolized as a glucuronide excreted in urine. Thus, the quantification of the OH-CHZ following enzymatic hydrolysis of CHZ-derived glucuronide appears to be a reliable assay to measure the CYP2E1 activity without direct detection of this glucuronide. However, OH-CHZ hydrolyzed from urinary glucuronide accounts for less than 80% of the CHZ administrated dose in humans leading to postulate the production of other unidentified metabolites. Moreover, the Uridine 5'-diphospho-glucuronosyltransferase (UGT) involved in the hepatic glucuronidation of OH-CHZ has not yet been identified. In this study, we used recombinant HepG2 cells expressing CYP2E1, metabolically competent HepaRG cells, primary hepatocytes and precision-cut human liver slices to identify metabolites of CHZ (300 µM) by high pressure liquid chromatography-UV and liquid-chromatography-mass spectrometry analyses. Herein, we report the detection of the CHZ-O-glucuronide (CHZ-O-Glc) derived from OH-CHZ in culture media but also in mouse and human urine and we identified a novel CHZ metabolite, the CHZ-N-glucuronide (CHZ-N-Glc), which is resistant to enzymatic hydrolysis and produced independently of CHZ hydroxylation by CYP2E1. Moreover, we demonstrate that UGT1A1, 1A6 and 1A9 proteins catalyze the synthesis of CHZ-O-Glc while CHZ-N-Glc is produced by UGT1A9 specifically. Together, we demonstrated that hydrolysis of CHZ-O-Glc is required to reliably quantify CYP2E1 activity because of the rapid transformation of OH-CHZ into CHZ-O-Glc and identified the CHZ-N-Glc produced independently of the CYP2E1 activity. Our results also raise the questions of the contribution of CHZ-N-Glc in the overall CHZ metabolism and of the quantification of CHZ glucuronides in vitro and in vivo for measuring UGT1A activities.


Assuntos
Clorzoxazona/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronídeos/metabolismo , Hepatócitos/metabolismo , Animais , Clorzoxazona/análogos & derivados , Clorzoxazona/farmacocinética , Clorzoxazona/urina , Cromatografia Líquida de Alta Pressão , Meios de Cultura/análise , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Hidroxilação , Masculino , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Pharmaceutics ; 14(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35456637

RESUMO

In order to identify the peptides, selected from the literature, that exhibit the strongest tropism towards human hepatoma cells, cell uptake assays were performed using biotinylated synthetic peptides bound to fluorescent streptavidin or engrafted onto nanoparticles (NPs), prepared from biotin-poly(ethylene glycol)-block-poly(benzyl malate) (Biot-PEG-b-PMLABe) via streptavidin bridging. Two peptides, derived from the circumsporozoite protein of Plasmodium berghei- (CPB) and George Baker (GB) Virus A (GBVA10-9), strongly enhanced the endocytosis of both streptavidin conjugates and NPs in hepatoma cells, compared to primary human hepatocytes and non-hepatic cells. Unexpectedly, the uptake of CPB- and GBVA10-9 functionalized PEG-b-PMLABe-based NPs by hepatoma cells involved, at least in part, the peptide binding to apolipoproteins, which would promote NP's interactions with cell membrane receptors of HDL particles. In addition, CPB and GBVA10-9 peptide-streptavidin conjugates favored the uptake by hepatoma cells over that of the human macrophages, known to strongly internalize nanoparticles by phagocytosis. These two peptides are promising candidate ligands for targeting hepatocellular carcinomas.

4.
Polymers (Basel) ; 14(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746020

RESUMO

We recently demonstrated the strong tropism of George Baker (GB) Virus A (GBVA10-9) and Plasmodium circumsporozoite protein (CPB) derived synthetic peptides towards hepatoma cells. In a first approach, these peptides were covalently bound to poly(benzyl malate) (PMLABe73) and poly(ethylene glycol)-block-PMLABe73 (PEG62-b-PMLABe73) (co)polymers, and corresponding peptide-decorated nanoparticles (NPs) were prepared by nanoprecipitation. We showed that peptide enhanced NPs internalization by hepatoma cells. In the present work, we set up a second strategy to functionalize NPs prepared from PMLABe73 derivates. First, maleimide-functionalized PMLABe73 (Mal-PMLABe73) and PEG62-b-PMLABe73 (Mal-PEG62-b-PMLABe73) were synthesized and corresponding NPs were prepared by nanoprecipitation. Then, peptides (GBVA10-9, CPB and their scramble controls GBVA10-9scr and CPBscr) with a thiol group were engrafted onto the NPs' maleimide groups using the Michael addition to obtain peptide functionalized NPs by post-formulation procedure. These peptide-modified NPs varied in diameter and dispersity depending on the considered peptides and/or (co)polymers but kept their spherical shape. The peptide-functionalized NPs were more efficiently internalized by HepaRG hepatoma cells than native and maleimide-NPs with various levels relying on the peptide's nature and the presence of PEG. We also observed important differences in internalization of NPs functionalized by the maleimide-thiol-peptide reaction compared to that of NPs prepared from peptide-functionalized PMLABe73 derivatives.

5.
Cells ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497165

RESUMO

The goal of this study was to establish a procedure for gene delivery mediated by cationic liposomes in quiescent differentiated HepaRG™ human hepatoma cells. We first identified several cationic lipids promoting efficient gene transfer with low toxicity in actively dividing HepG2, HuH7, BC2 and progenitor HepaRG™ human hepatoma cells. The lipophosphoramidate Syn1-based nanovector, which allowed the highest transfection efficiencies of progenitor HepaRG™ cells, was next used to transfect differentiated HepaRG™ cells. Lipofection of these cells using Syn1-based liposome was poorly efficient most likely because the differentiated HepaRG™ cells are highly quiescent. Thus, we engineered the differentiated HepaRG™ Mitogenic medium supplement (ADD1001) that triggered robust proliferation of differentiated cells. Importantly, we characterized the phenotypical changes occurring during proliferation of differentiated HepaRG™ cells and demonstrated that mitogenic stimulation induced a partial and transient decrease in the expression levels of some liver specific functions followed by a fast recovery of the full differentiation status upon removal of the mitogens. Taking advantage of the proliferation of HepaRG™ cells, we defined lipofection conditions using Syn1-based liposomes allowing transient expression of the cytochrome P450 2D6, a phase I enzyme poorly expressed in HepaRG cells, which opens new means for drug metabolism studies in HepaRG™ cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Lipossomos , Citocromo P-450 CYP2D6/genética , Transfecção , Diferenciação Celular/fisiologia , Carcinoma Hepatocelular/genética , Cátions
6.
Nanomaterials (Basel) ; 11(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918663

RESUMO

Recently, short synthetic peptides have gained interest as targeting agents in the design of site-specific nanomedicines. In this context, our work aimed at developing new tools for the diagnosis and/or therapy of hepatocellular carcinoma (HCC) by grafting the hepatotropic George Baker (GB) virus A (GBVA10-9) and Plasmodium circumsporozoite protein (CPB)-derived peptides to the biocompatible poly(benzyl malate), PMLABe. We successfully synthesized PMLABe derivatives end-functionalized with peptides GBVA10-9, CPB, and their corresponding scrambled peptides through a thiol/maleimide reaction. The corresponding nanoparticles (NPs), varying by the nature of the peptide (GBVA10-9, CPB, and their scrambled peptides) and the absence or presence of poly(ethylene glycol) were also successfully formulated using nanoprecipitation technique. NPs were further characterized by dynamic light scattering (DLS), electrophoretic light scattering (ELS) and transmission electron microscopy (TEM), highlighting a diameter lower than 150 nm, a negative surface charge, and a more or less spherical shape. Moreover, a fluorescent probe (DiD Oil) has been encapsulated during the nanoprecipitation process. Finally, preliminary in vitro internalisation assays using HepaRG hepatoma cells demonstrated that CPB peptide-functionalized PMLABe NPs were efficiently internalized by endocytosis, and that such nanoobjects may be promising drug delivery systems for the theranostics of HCC.

7.
Polymers (Basel) ; 12(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751402

RESUMO

Hydrophobic and amphiphilic derivatives of the biocompatible and biodegradable poly(dimethylmalic acid) (PdiMeMLA), varying by the nature of the lateral chains and the length of each block, respectively, have been synthesized by anionic ring-opening polymerization (aROP) of the corresponding monomers using an initiator/base system, which allowed for very good control over the (co)polymers' characteristics (molar masses, dispersity, nature of end-chains). Hydrophobic and core-shell nanoparticles (NPs) were then prepared by nanoprecipitation of hydrophobic homopolymers and amphiphilic block copolymers, respectively. Negatively charged NPs, showing hydrodynamic diameters (Dh) between 50 and 130 nm and narrow size distributions (0.08 < PDI < 0.22) depending on the (co)polymers nature, were obtained and characterized by dynamic light scattering (DLS), zetametry, and transmission electron microscopy (TEM). Finally, the cytotoxicity and cellular uptake of the obtained NPs were evaluated in vitro using the hepatoma HepaRG cell line. Our results showed that both cytotoxicity and cellular uptake were influenced by the nature of the (co)polymer constituting the NPs.

8.
Fundam Clin Pharmacol ; 33(1): 63-74, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30447168

RESUMO

Alcohol consumption is considered to be the third leading cause of death in the United States. In addition to its direct toxicity, ethanol has two contrasting effects on the immune system: the nucleotide oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome is inhibited by acute ethanol exposure but activated by chronic ethanol exposure. Purinergic receptors (especially the P2X7 receptor) are able to activate the NLRP3 inflammasome and are involved in many ethanol-related diseases (such as gout, pulmonary fibrosis, alcoholic steatohepatitis, and certain cancers). We hypothesized that ethanol regulates purinergic receptors and thus modulates the NLRP3 inflammasome's activity. In experiments with monocyte-derived macrophages, we found that interleukin (IL)-1ß secretion was inhibited after 7 h of exposure (but not 48 h of exposure) to ethanol. The disappearance of ethanol's inhibitory effect on IL-1ß secretion after 48 h was not mediated by the upregulated production of IL-1ß, IL-1α, IL-6 or the inflammasome components NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain, and caspase 1. P2X7R expression was upregulated by ethanol, whereas expression of the P2X4 and P2X1 receptors was not. Taken as a whole, our results suggest that ethanol induces NLRP3 inflammasome activation by upregulating the P2X7 receptor. This observation might have revealed a new mechanism for inflammation in ethanol-related diseases.


Assuntos
Etanol/toxicidade , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores Purinérgicos P2X7/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Caspase 1/metabolismo , Células Cultivadas , Etanol/administração & dosagem , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Interleucinas/metabolismo , Macrófagos/metabolismo , Monócitos/citologia , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
9.
Polymers (Basel) ; 10(11)2018 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30961169

RESUMO

The design of drug-loaded nanoparticles (NPs) appears to be a suitable strategy for the prolonged plasma concentration of therapeutic payloads, higher bioavailability, and the reduction of side effects compared with classical chemotherapies. In most cases, NPs are prepared from (co)polymers obtained through chemical polymerization. However, procedures have been developed to synthesize some polymers via enzymatic polymerization in the absence of chemical initiators. The aim of this work was to compare the acute in vitro cytotoxicities and cell uptake of NPs prepared from poly(benzyl malate) (PMLABe) synthesized by chemical and enzymatic polymerization. Herein, we report the synthesis and characterization of eight PMLABe-based polymers. Corresponding NPs were produced, their cytotoxicity was studied in hepatoma HepaRG cells, and their uptake by primary macrophages and HepaRG cells was measured. In vitro cell viability evidenced a mild toxicity of the NPs only at high concentrations/densities of NPs in culture media. These data did not evidence a higher biocompatibility of the NPs prepared from enzymatic polymerization, and further demonstrated that chemical polymerization and the nanoprecipitation procedure led to biocompatible PMLABe-based NPs. In contrast, NPs produced from enzymatically synthesized polymers were more efficiently internalized than NPs produced from chemically synthesized polymers. The efficient uptake, combined with low cytotoxicity, indicate that PMLABe-based NPs are suitable nanovectors for drug delivery, deserving further evaluation in vivo to target either hepatocytes or resident liver macrophages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA