Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 599(7883): 108-113, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34551425

RESUMO

Throughout the coronavirus disease 2019 (COVID-19) pandemic, countries have relied on a variety of ad hoc border control protocols to allow for non-essential travel while safeguarding public health, from quarantining all travellers to restricting entry from select nations on the basis of population-level epidemiological metrics such as cases, deaths or testing positivity rates1,2. Here we report the design and performance of a reinforcement learning system, nicknamed Eva. In the summer of 2020, Eva was deployed across all Greek borders to limit the influx of asymptomatic travellers infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and to inform border policies through real-time estimates of COVID-19 prevalence. In contrast to country-wide protocols, Eva allocated Greece's limited testing resources on the basis of incoming travellers' demographic information and testing results from previous travellers. By comparing Eva's performance against modelled counterfactual scenarios, we show that Eva identified 1.85 times as many asymptomatic, infected travellers as random surveillance testing, with up to 2-4 times as many during peak travel, and 1.25-1.45 times as many asymptomatic, infected travellers as testing policies that utilize only epidemiological metrics. We demonstrate that this latter benefit arises, at least partially, because population-level epidemiological metrics had limited predictive value for the actual prevalence of SARS-CoV-2 among asymptomatic travellers and exhibited strong country-specific idiosyncrasies in the summer of 2020. Our results raise serious concerns on the effectiveness of country-agnostic internationally proposed border control policies3 that are based on population-level epidemiological metrics. Instead, our work represents a successful example of the potential of reinforcement learning and real-time data for safeguarding public health.


Assuntos
COVID-19/diagnóstico , COVID-19/prevenção & controle , Portador Sadio/diagnóstico , Portador Sadio/prevenção & controle , Aprendizado de Máquina , Medicina de Viagem , Viagem , COVID-19/epidemiologia , COVID-19/transmissão , Portador Sadio/epidemiologia , Portador Sadio/transmissão , Grécia , Humanos , Prevalência , Saúde Pública
3.
Int J Mol Sci ; 19(5)2018 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-29710819

RESUMO

Skeletal muscle is a major insulin-target tissue and plays an important role in glucose homeostasis. Insulin action in muscle activates the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway causing the translocation of intracellularly stored GLUT4 glucose transporters to the plasma membrane and increased glucose uptake. Impaired insulin action in muscle results in insulin resistance and type 2 diabetes mellitus (T2DM). Activation of the energy sensor AMP-activated kinase (AMPK) increases muscle glucose uptake and the use of AMPK activators is viewed as an effective strategy to combat insulin resistance. Rosemary extract (RE) has been shown to stimulate muscle AMPK and glucose uptake, but the exact components responsible for these effects are unknown. In the current study, we investigated the effect of carnosol, a RE polyphenol, in L6 rat muscle cells. Carnosol stimulated glucose uptake in L6 myotubes in a dose- and time-dependent manner, did not affect Akt, increased AMPK phosphorylation and plasma membrane GLUT4 levels. The carnosol-stimulated glucose uptake and GLUT4 translocation was significantly reduced by the AMPK inhibitor compound C (CC). Our study is the first to show an AMPK-dependent increase in muscle glucose uptake by carnosol. Carnosol has potential as a glucose homeostasis regulating agent and deserves further study.


Assuntos
Abietanos/farmacologia , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Linhagem Celular , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Quinases/metabolismo , Transporte Proteico , Ratos
4.
Amino Acids ; 49(5): 995-1004, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28283906

RESUMO

Chloramphenicol peptides were recently established as useful tools for probing nascent polypeptide chain interaction with the ribosome, either biochemically, or structurally. Here, we present a new 10mer chloramphenicol peptide, which exerts a dual inhibition effect on the ribosome function affecting two distinct areas of the ribosome, namely the peptidyl transferase center and the polypeptide exit tunnel. According to our data, the chloramphenicol peptide bound on the chloramphenicol binding site inhibits the formation of both acetyl-phenylalanine-puromycin and acetyl-lysine-puromycin, showing, however, a decreased peptidyl transferase inhibition compared to chloramphenicol-mediated inhibition per se. Additionally, we found that the same compound is a strong inhibitor of green fluorescent protein synthesis in a coupled in vitro transcription-translation assay as well as a potent inhibitor of lysine polymerization in a poly(A)-programmed ribosome, showing that an additional inhibitory effect may exist. Since chemical protection data supported the interaction of the antibiotic with bases A2058 and A2059 near the entrance of the tunnel, we concluded that the extra inhibition effect on the synthesis of longer peptides is coming from interactions of the peptide moiety of the drug with residues comprising the ribosomal tunnel, and by filling up the tunnel and blocking nascent chain progression through the restricted tunnel. Therefore, the dual interaction of the chloramphenicol peptide with the ribosome increases its inhibitory effect and opens a new window for improving the antimicrobial potency of classical antibiotics or designing new ones.


Assuntos
Cloranfenicol/farmacologia , Fluorenos/química , Peptídeos/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Ribossomos/efeitos dos fármacos , Sequência de Aminoácidos , Sítios de Ligação , Cloranfenicol/análogos & derivados , Cloranfenicol/síntese química , Escherichia coli K12/química , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Fluorescência Verde/antagonistas & inibidores , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Sítios Internos de Entrada Ribossomal/efeitos dos fármacos , Modelos Moleculares , Peptídeos/síntese química , Peptidil Transferases/antagonistas & inibidores , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Poli A/genética , Poli A/metabolismo , Ligação Proteica , Inibidores da Síntese de Proteínas/síntese química , Puromicina/farmacologia , Ribossomos/genética , Ribossomos/metabolismo
5.
Nutrients ; 9(11)2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29125563

RESUMO

Uncontrolled cell growth and resistance to apoptosis characterize cancer cells. These two main features are initiated in cancer cells through mutations in key signaling molecules, which regulate pathways that are directly involved in controlling cell proliferation and apoptosis. Resveratrol (RSV), a naturally occurring plant polyphenol, has been shown to have biological effects counteracting different diseases. It has been found to provide cardio-protective, neuro-protective, immuno-modulatory, and anti-cancer health benefits. RSV has been found to inhibit cancer cell proliferation, induce cell cycle arrest and apoptosis, and these anticancer effects may be due to its ability to modulate signaling molecules involved in these processes. The present review summarizes the existing in vitro and in vivo studies on resveratrol and its anti-lung cancer properties.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Estilbenos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Resveratrol
6.
Antibiotics (Basel) ; 5(2)2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27271676

RESUMO

Chloramphenicol (CAM) is the D-threo isomer of a small molecule, consisting of a p-nitrobenzene ring connected to a dichloroacetyl tail through a 2-amino-1,3-propanediol moiety. CAM displays a broad-spectrum bacteriostatic activity by specifically inhibiting the bacterial protein synthesis. In certain but important cases, it also exhibits bactericidal activity, namely against the three most common causes of meningitis, Haemophilus influenzae, Streptococcus pneumoniae and Neisseria meningitidis. Resistance to CAM has been frequently reported and ascribed to a variety of mechanisms. However, the most important concerns that limit its clinical utility relate to side effects such as neurotoxicity and hematologic disorders. In this review, we present previous and current efforts to synthesize CAM derivatives with improved pharmacological properties. In addition, we highlight potentially broader roles of these derivatives in investigating the plasticity of the ribosomal catalytic center, the main target of CAM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA