Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Immunol ; 265: 110279, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878807

RESUMO

Systemic lupus erythematosus is an autoimmune disease that results in immune-mediated damage to kidneys and other organs. We investigated the role of response gene to complement-32 (RGC-32), a proinflammatory and profibrotic mediator induced by TGFß and C5b-9, in nephrotoxic nephritis (NTN), an experimental model that mimics human lupus nephritis. Proteinuria, loss of renal function and kidney histopathology were attenuated in RGC-32 KO NTN mice. RGC-32 KO NTN mice displayed downregulation of the CCL20/CCR6 and CXCL9/CXCR3 ligand/receptor pairs resulting in decreased renal recruitment of IL-17+ and IFNγ+ cells and subsequent decrease in the influx of innate immune cells. RGC-32 deficiency attenuated renal fibrosis as demonstrated by decreased deposition of collagen I, III and fibronectin. Thus, RGC-32 is a unique mediator shared by the Th17 and Th1 dependent proinflammatory and profibrotic pathways and a potential novel therapeutic target in the treatment of immune complex mediated glomerulonephritis such as lupus nephritis.

2.
Clin Immunol ; 238: 109020, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35462050

RESUMO

Proliferation of endothelial cells (EC) and smooth muscle cells (SMC) is a critical process in atherosclerosis. Here, we investigated the involvement of sublytic C5b-9 effector Response Gene to Complement 32 (RGC-32) in cell cycle activation, phenotypic switch, and production of extracellular matrix (ECM) in SMC. Overexpression of RGC-32 augmented C5b-9-induced cell cycle activation and proliferation of SMC in an ERK1-dependent manner and silencing of RGC-32 inhibited C5b-9-induced cell cycle activation. C5b-9-induced cell cycle activation also required phosphorylation of RGC-32 at threonine 91. We found that ECM components fibronectin and collagens I-V were expressed by SMC in human aortic atherosclerotic tissue. Silencing of RGC-32 in cultured SMC was followed by a significant reduction in TGF-ß-induced expression of SMC differentiation markers myocardin, SM22 and α-SMA, and that of collagens I, IV and V. These data suggest that RGC-32 participates in both sublytic C5b-9-induced cell cycle activation and TGF-ß-induced ECM production.


Assuntos
Aterosclerose , Proteínas de Ciclo Celular , Complexo de Ataque à Membrana do Sistema Complemento , Proteínas Musculares , Proteínas do Tecido Nervoso , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento , Células Endoteliais , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fator de Crescimento Transformador beta
3.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36362423

RESUMO

Atherosclerosis and its clinical manifestations, coronary and cerebral artery diseases, are the most common cause of death worldwide. The main pathophysiological mechanism for these complications is the rupture of vulnerable atherosclerotic plaques and subsequent thrombosis. Pathological studies of the vulnerable lesions showed that more frequently, plaques rich in lipids and with a high level of inflammation, responsible for mild or moderate stenosis, are more prone to rupture, leading to acute events. Identifying the vulnerable plaques helps to stratify patients at risk of developing acute vascular events. Traditional imaging methods based on plaque appearance and size are not reliable in prediction the risk of rupture. Intravascular imaging is a novel technique able to identify vulnerable lesions, but it is invasive and an operator-dependent technique. This review aims to summarize the current data from literature regarding the main biomarkers involved in the attempt to diagnose vulnerable atherosclerotic lesions. These biomarkers could be the base for risk stratification and development of the new therapeutic drugs in the treatment of patients with vulnerable atherosclerotic plaques.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/complicações , Aterosclerose/patologia , Biomarcadores , Diagnóstico por Imagem/métodos , Inflamação/patologia , Doença da Artéria Coronariana/patologia
4.
Medicina (Kaunas) ; 58(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35630058

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a new challenge in modern medicine, due to its high prevalence in the world. The pathogenesis of NAFLD is a complex dysmetabolic process, following the "multiple-hit" hypothesis that involves hepatocytes excessive accumulation of triglycerides, insulin resistance (IR), increased oxidative stress, chronic low-grade inflammatory response and lipotoxicity. In this review, we provide an overview of the interrelation of these processes, the link between systemic and local inflammation and the role of dysfunctional adipose tissue (AT) in the NAFLD development. Multiple extrahepatic triggers of the pathophysiological mechanisms of NAFLD are described: nutritional deficiency or malnutrition, unhealthy food intake, the dysfunction of the liver-gut axis, the involvement of the mesenteric adipose tissue, the role of adipokines such as adiponectin, of food intake hormone, the leptin and leptin resistance (LR) and adipose tissue's hormone, the resistin. In addition, a wide range of intrahepatic players are involved: oxidative stress, fatty acid oxidation, endoplasmic reticulum stress, mitochondrial dysfunction, resident macrophages (Kupffer cells), neutrophils, dendritic cells (DCs), B and T lymphocytes contributing to the potential evolution of NAFLD to nonalcoholic steatohepatitis (NASH). This interdependent approach to complex dysmetabolic imbalance in NAFLD, integrating relevant studies, could contribute to a better clarification of pathogenesis and consequently the development of new personalized treatments, targeting de novo lipogenesis, chronic inflammation and fibrosis. Further studies are needed to focus not only on treatment, but also on prevention strategy in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Tecido Adiposo , Humanos , Inflamação , Leptina , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/patologia
5.
Medicina (Kaunas) ; 55(10)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623212

RESUMO

Background and Objectives: Deep vein thrombosis (DVT) is a common cause of intra-hospital morbidity and mortality, and its most severe complication is pulmonary thromboembolism. The risk factors that influence the apparition of DVT are generally derived from Virchow's triad. Since the most severe complications of DVT occur in proximal rather than distal deep vein thrombosis, the aim of this study was to identify the factors influencing the apparition of proximal DVT. Materials and Methods: This was a transversal, cohort study. The study included 167 consecutive patients with lower limb DVT over a two-year period. The following data were recorded or determined: general data, conditions that are known to influence DVT, medical history and coagulation or thrombophilia-related genetic variations. Results: In the univariate analysis, male gender, neoplasia, previous DVT and mutated factor V Leiden were all associated with proximal DVT, while bed rest was associated with distal DVT. In the multivariate analysis, male gender, previous DVT and factor V Leiden mutation were independently correlated with proximal DVT, while bed rest was independently associated with distal deep vein thrombosis. Conclusion: Our observations point out that the factors indicating a systemic involvement of coagulation were correlated with proximal DVT, while local factors were associated with distal DVT.


Assuntos
Trombose Venosa/classificação , Trombose Venosa/etiologia , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Romênia
6.
Exp Mol Pathol ; 101(2): 221-230, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27619159

RESUMO

The complement system is an important player in the development of atherosclerosis. Previously reported as a cell cycle regulator, RGC-32 is an essential effector of the terminal complement complex, C5b-9. In this study, our aims were to determine the expression of RGC-32 in the human atherosclerotic arterial wall and to delineate the mechanisms through which RGC-32 affects C5b-9-induced endothelial cell proliferation and migration. We now demonstrate that RGC-32 is expressed in human aortic atherosclerotic wall and that RGC-32 expression increases with the progression of atherosclerosis. Furthermore, silencing of RGC-32 expression abolished C5b-9-induced human aortic endothelial cell (HAEC) proliferation and migration. Of the 279 genes differentially expressed in HAECs after RGC-32 silencing, the genes involved in cell adhesion and cell cycle activation were significantly regulated by RGC-32. RGC-32 silencing caused a significant reduction in the expression of cyclin D1, cyclin D3, Akt, ROCK1, Rho GDP dissociation inhibitor alpha and profilin. These data suggest that RGC-32 mediates HAEC migration through the regulation of RhoA and ROCK1 expression and is involved in actin cytoskeletal organization. Thus, RGC-32 has promising therapeutic potential with regard to angiogenesis and atherosclerosis.


Assuntos
Aorta/patologia , Aterosclerose/patologia , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Idoso , Idoso de 80 Anos ou mais , Aorta/metabolismo , Aterosclerose/genética , Western Blotting , Proliferação de Células , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Inativação Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Mitose , Miócitos de Músculo Liso/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica
7.
Exp Mol Pathol ; 98(3): 328-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25770350

RESUMO

We have previously shown that RGC-32 is involved in cell cycle regulation in vitro. To define the in vivo role of RGC-32, we generated RGC-32 knockout mice. These mice developed normally and did not spontaneously develop overt tumors. To assess the effect of RGC-32 deficiency on cell cycle activation in T cells, we determined the proliferative rates of CD4(+) and CD8(+) T cells from the spleens of RGC-32(-/-) mice, as compared to wild-type (WT, RGC-32(+/+)) control mice. After stimulation with anti-CD3/anti-CD28, CD4(+) T cells from RGC-32(-/-) mice displayed a significant increase in [(3)H]-thymidine incorporation when compared to WT mice. In addition, both CD4(+) and CD8(+) T cells from RGC-32(-/-) mice displayed a significant increase in the proportion of proliferating Ki67(+) cells, indicating that in T cells, RGC-32 has an inhibitory effect on cell cycle activation induced by T-cell receptor/CD28 engagement. Furthermore, Akt and FOXO1 phosphorylation induced in stimulated CD4(+) T-cells from RGC-32(-/-) mice were significantly higher, indicating that RGC-32 inhibits cell cycle activation by suppressing FOXO1 activation. We also found that IL-2 mRNA and protein expression were significantly increased in RGC-32(-/-) CD4(+) T cells when compared to RGC-32(+/+) CD4(+) T cells. In addition, the effect of RGC-32 on the cell cycle and IL-2 expression was inhibited by pretreatment of the samples with LY294002, indicating a role for phosphatidylinositol 3-kinase (PI3K). Thus, RGC-32 is involved in controlling the cell cycle of T cells in vivo, and this effect is mediated by IL-2 in a PI3K-dependent fashion.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Ciclo Celular , Proteínas Nucleares/metabolismo , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Cromonas/farmacologia , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Proteínas Nucleares/genética , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Exp Mol Pathol ; 96(2): 139-48, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24397908

RESUMO

SIRT1 is a member of the histone deacetylase (HDAC) class III family of proteins and is an NAD-dependent histone and protein deacetylase. SIRT1 can induce chromatin silencing through the deacetylation of histones and can modulate cell survival by regulating the transcriptional activities. We investigated the expression of SIRT1 in multiple sclerosis (MS) brains and in peripheral blood mononuclear cells (PBMCs) obtained from patients with relapsing-remitting multiple sclerosis. We found that SIRT1 was expressed by a significant number of cells in both acute and chronic active lesions. We also found that CD4(+), CD68(+), oligodendrocytes (OLG), and glial fibrillar acidic protein (GFAP)(+) cells in MS plaques co-localized with SIRT1. Our results show a statistically significant decrease in SIRT1 mRNA and protein expression in PBMCs during relapses when compared to the levels in controls and stable MS patients. On the other hand, HDAC3 expression was not significantly changed during relapses in MS patients. SIRT1 expression correlated with that of histone H3 lysine 9 acetylation (H3K9ac) and methylation (H3K9me2). SIRT1 mRNA expression was significantly reduced after RGC-32 silencing, indicating a role for RGC-32 in the regulation of SIRT1 expression. Furthermore, we investigated the role of SIRT1 in the expression of FasL and found a significant increase in FasL expression and apoptosis after inhibition of SIRT1 expression. Our data suggest that SIRT1 may represent a biomarker of relapses and a potential new target for therapeutic intervention in MS.


Assuntos
Encéfalo/patologia , Histonas/metabolismo , Leucócitos Mononucleares/metabolismo , Esclerose Múltipla/genética , Sirtuína 1/sangue , Acetilação , Adolescente , Adulto , Idoso , Apoptose/genética , Biomarcadores/metabolismo , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Humanos , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Esclerose Múltipla/patologia , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/biossíntese , Sirtuína 1/biossíntese , Sirtuína 1/genética
10.
Front Immunol ; 14: 1216457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533859

RESUMO

The brains of COVID-19 patients are affected by the SARS-CoV-2 virus, and these effects may contribute to several COVID-19 sequelae, including cognitive dysfunction (termed "long COVID" by some researchers). Recent advances concerning the role of neuroinflammation and the consequences for brain function are reviewed in this manuscript. Studies have shown that respiratory SARS-CoV-2 infection in mice and humans is associated with selective microglial reactivity in the white matter, persistently impaired hippocampal neurogenesis, a decrease in the number of oligodendrocytes, and myelin loss. Brain MRI studies have revealed a greater reduction in grey matter thickness in the orbitofrontal cortex and parahippocampal gyrus, associated with a greater reduction in global brain size, in those with SARS-CoV-2 and a greater cognitive decline. COVID-19 can directly infect endothelial cells of the brain, potentially promoting clot formation and stroke; complement C3 seems to play a major role in this process. As compared to controls, the brain tissue of patients who died from COVID-19 have shown a significant increase in the extravasation of fibrinogen, indicating leakage in the blood-brain barrier; furthermore, recent studies have documented the presence of IgG, IgM, C1q, C4d, and C5b-9 deposits in the brain tissue of COVID-19 patients. These data suggest an activation of the classical complement pathway and an immune-mediated injury to the endothelial cells. These findings implicate both the classical and alternative complement pathways, and they indicate that C3b and the C5b-9 terminal complement complex (membrane attack complex, MAC) are acting in concert with neuroinflammatory and immune factors to contribute to the neurological sequelae seen in patients with COVID.


Assuntos
COVID-19 , Complexo de Ataque à Membrana do Sistema Complemento , Humanos , Camundongos , Animais , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Células Endoteliais/metabolismo , SARS-CoV-2/metabolismo , Encéfalo/metabolismo
11.
Med Pharm Rep ; 94(4): 507-511, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36105503

RESUMO

Necrotizing myositis represents a rare, aggressive form of bacterial-induced soft tissue necrotizing infection. We present a fulminant case of a 44-year-old patient with a necrotizing soft tissue infection and a history of rheumatoid arthritis transferred to our service, Cluj-Napoca Emergency County Hospital, from a local hospital where he had been admitted two days before with chills and light-headedness after an accidental minor blunt trauma in the right thigh region. After admission to our hospital and first assessment, broad spectrum antibiotherapy was started with Meropenem, Vancomycin and Metronidazole along with surgical debridement. The evolution was fulminant with rapid development of multiple organ dysfunction syndrome, therefore he was transferred to the intensive care unit, intubated, and started the volemic resuscitation and vasopressor therapy. The blood culture was positive for group A beta-hemolytic streptococcus (GAS) and high dose Penicillin G was added to the therapeutic scheme. Despite all efforts, the patient developed disseminated intravascular coagulation syndrome and died in the next hours. The clinical picture together with the findings from the autopsy were suggestive for a streptococcal toxic shock syndrome developed as a complication of GAS induced necrotizing myositis.

12.
Artigo em Inglês | MEDLINE | ID: mdl-34831679

RESUMO

(1) Background and objective: Cardiac rehabilitation (CR) means delivering health education by structured exercises with the means of risk reduction, in a cost-effective manner. Well-conducted CR improves functional capacity, decreases re-hospitalization, and reduces mortality up to 25%. We bring to attention the protocol of a randomised control trial with the aim of validating the prototype of an assistive upper-body robotic exoskeleton system enhanced with a non-immersive virtual reality exergame (CardioVR-ReTone) in patients who undergone cardiac surgery. (2) Methods: Description of the CardioVR-ReTone system and the technical specification, followed by the group selection, randomization and evaluated variables. (3) Expected results: The primary outcome measurement is the modification of life quality at the end of the CR exercise training program. Secondary outcomes will encompass measurements of sternal stability, muscular activity, cardiac response to exercise, pain level and compliance/adherence to CR. (4) Conclusions: Implementing these novel features of the CardioVR-ReTone system, addressability, and efficacy of CR, so problematic in certain situations and especially in cardiac surgery, will be greatly facilitated, being independent of the skills and availability of the rehabilitation therapist.


Assuntos
Reabilitação Cardíaca , Exoesqueleto Energizado , Realidade Virtual , Jogos Eletrônicos de Movimento , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Esternotomia
13.
Artigo em Inglês | MEDLINE | ID: mdl-35010467

RESUMO

Cardiovascular diseases create an important burden on the public health systems, especially in the elderly, mostly because this group of patients frequently suffer from multiple comorbidities. Accumulating cardiovascular risk factors during their lifetime has a detrimental effect on an older adult's health status. The modifiable and non-modifiable cardiovascular risk factors are very diverse, and are frequently in a close relationship with the metabolic comorbidities of the elderly, mainly obesity and Diabetes Mellitus. In this review, we aim to present the most important cardiovascular risk factors which link aging and cardiovascular diseases, starting from the pathophysiological links between these factors and the aging process. Next, we will further review the main interconnections between obesity and Diabetes Mellitus and cardiovascular diseases of the elderly. Lastly, we consider the most important aspects related to prevention through lifestyle changes and physical activity on the occurrence of cardiovascular diseases in the elderly.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Idoso , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/prevenção & controle , Exercício Físico , Fatores de Risco de Doenças Cardíacas , Humanos , Fatores de Risco
14.
Exp Mol Pathol ; 88(1): 67-76, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19883641

RESUMO

First described as a cell cycle activator, RGC-32 is both an activator and a substrate for CDC2. Deregulation of RGC-32 expression has been detected in a wide variety of human cancers. We have now shown that RGC-32 is expressed in precancerous states, and its expression is significantly higher in adenomas than in normal colon tissue. The expression of RGC-32 was higher in advanced stages of colon cancer than in precancerous states or the initial stages of colon cancer. In order to identify the genes that are regulated by RGC-32, we used gene array analysis to investigate the effect of RGC-32 knockdown on gene expression in the SW480 colon cancer cell line. Of the 230 genes that were differentially regulated after RGC-32 knockdown, a group of genes involved in chromatin assembly were the most significantly regulated in these cells: RGC-32 knockdown induced an increase in acetylation of histones H2B lysine 5 (H2BK5), H2BK15, H3K9, H3K18, and H4K8. RGC-32 silencing was also associated with decreased expression of SIRT1 and decreased trimethylation of histone H3K27 (H3K27me3). In addition, RGC-32 knockdown caused a significantly higher percentage of SW480 cells to enter S phase and subsequently G2/M. These data suggest that RGC-32 may contribute to the development of colon cancer by regulating chromatin assembly.


Assuntos
Adenocarcinoma/genética , Adenoma/genética , Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/genética , Epigênese Genética , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Lesões Pré-Cancerosas/genética , Acetilação , Adenocarcinoma/metabolismo , Adenoma/metabolismo , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/genética , Neoplasias Colorretais/metabolismo , Metilação de DNA , Técnica Indireta de Fluorescência para Anticorpo , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Histonas/genética , Histonas/metabolismo , Humanos , Técnicas Imunoenzimáticas , Lesões Pré-Cancerosas/metabolismo , Análise Serial de Tecidos
15.
Front Immunol ; 11: 619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328069

RESUMO

Sublytic levels of C5b-9 increase the survival of oligodendrocytes (OLGs) and induce the cell cycle. We have previously observed that SIRT1 co-localizes with surviving OLGs in multiple sclerosis (MS) plaques, but it is not yet known whether SIRT1 is involved in OLGs survival after exposure to sublytic C5b-9. We have now investigated the role of SIRT1 in OLGs differentiation and the effect of sublytic levels of C5b-9 on SIRT1 and phosphorylated-SIRT1 (Ser27) expression. We also examined the downstream effects of SIRT1 by measuring histone H3 lysine 9 trimethylation (H3K9me3) and the expression of cyclin D1 as a marker of cell cycle activation. OLG progenitor cells (OPCs) purified from the brain of rat pups were differentiated in vitro and treated with sublytic C5b-9 or C5b6. To investigate the signaling pathway activated by C5b-9 and required for SIRT1 expression, we pretreated OLGs with a c-jun antisense oligonucleotide, a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002), and a protein kinase C (PKC) inhibitor (H7). Our data show a significant reduction in phospho-SIRT1 and SIRT1 expression during OPCs differentiation, associated with a decrease in H3K9me3 and a peak of cyclin D1 expression in the first 24 h. Stimulation of OLGs with sublytic C5b-9 resulted in an increase in the expression of SIRT1 and phospho-SIRT1, H3K9me3, cyclin D1 and decreased expression of myelin-specific genes. C5b-9-stimulated SIRT1 expression was significantly reduced after pretreatment with c-jun antisense oligonucleotide, H7 or LY294002. Inhibition of SIRT1 with sirtinol also abolished C5b-9-induced DNA synthesis. Taken together, these data show that induction of SIRT1 expression by C5b-9 is required for cell cycle activation and is mediated through multiple signaling pathways.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento/farmacologia , Oligodendroglia/efeitos dos fármacos , Sirtuína 1/fisiologia , Animais , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Bainha de Mielina/efeitos dos fármacos , Oligodendroglia/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteína Quinase C/fisiologia , Ratos , Ratos Sprague-Dawley
16.
Healthcare (Basel) ; 8(4)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076509

RESUMO

(1) Aim: The aim of this study was to assess the preferences of oral anticoagulants (OA) in patients diagnosed with deep vein thrombosis (DVT) of lower limbs or non-valvular atrial fibrillation (AF) requiring anticoagulation for medium/long term. (2) Materials and methods: the study included consecutive patients admitted with a diagnosis of either acute DVT of lower limbs (without signs of pulmonary embolism) or non-valvular AF who required oral anticoagulation, in a time frame of 18 months from January 2017 until June 2018. The following data were recorded: demographic variables, comorbidities (ischemic heart disease, arterial hypertension, heart failure, stroke, peripheral artery disease, diabetes mellitus, obesity), type and dose of OA (acenocoumarol, dabigatran, apixaban, rivaroxaban), complications due to the use of OA. (3) Results: AF patients were older and had considerably more cardiovascular comorbidities than DVT patients. Vitamin K antagonists (VKA) were more likely to be administered in patients with AF, as they had indication for indefinite anticoagulation. VKA were more frequently prescribed in patients with ischemic heart disease, heart failure, and diabetes compared with DVT patients. Moreover, complications related to OA use were more frequent in the VKA group. Almost half of patients with acute DVT (48.5%) were treated with direct OA (DOAC) rather than VKA, and only a quarter of AF patients (24.8%) were treated with DOACs.

17.
Genes (Basel) ; 11(7)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698322

RESUMO

INTRODUCTION: Atherosclerosis represents the process by which fibrous plaques are formed in the arterial wall, increasing its rigidity with a subsequent decrease in blood flow which can lead to several cardiovascular events. Seeing as vitamin K antagonists are involved in the pathogenesis of atherosclerosis, we decided to investigate whether polymorphisms in genes that influence vitamin K metabolism might have an impact in modulating the risk of plaque formation. PATIENTS AND METHODS: In the current study we included adult patients admitted in the Clinical Municipal Hospital of Cluj-Napoca without any carotid or femoral plaques clinically visible at the initial investigation, and a five year follow-up was subsequently performed. We recorded the following patient characteristics: age at inclusion, gender, area of living, smoking, presence of carotid and/or femoral plaques at five years, ischemic heart disease, arterial hypertension, atrial fibrillation, heart failure, diabetes mellitus, obesity, dyslipidemia, drug (oral anticoagulants, antihypertensives, hypolipidemic, anti-diabetic) use and status for the following gene polymorphisms: VKORC1 1639 G>A, CYP4F2 1347 G>T and GGCX 12970 C>G. RESULTS: We observed that the major predictor of both carotid and femoral plaque formation is represented by ischemic cardiac disease. VKORC1 and CYP4F2 polymorphisms did not predict plaque formation, except for VKORC1 homozygous mutants. Nonetheless, both VKORC1 and CYP4F2 interacted with ischemic cardiac disease, increasing the risk of developing a carotid plaque, while only CYP4F2, but not VKORC1, interacted with ischemic cardiac disease to increase the risk of femoral plaque formation. CONCLUSIONS: We documented that CYP4F2 and VKORC1 polymorphisms boost the proinflammatory plaque environment (observed indirectly through the presence of ischemic heart disease), increasing the risk of plaque development.


Assuntos
Doenças das Artérias Carótidas/genética , Família 4 do Citocromo P450/genética , Placa Aterosclerótica/genética , Polimorfismo de Nucleotídeo Único , Vitamina K Epóxido Redutases/genética , Idoso , Doenças das Artérias Carótidas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica/patologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-32512937

RESUMO

BACKGROUND: Atrial fibrillation is a major health problem due to the stroke risk associated with it. To reduce stroke risk, oral anticoagulants (OAC) are prescribed using the CHA2DS2-VASc (Congestive heart failure; Hypertension; Age ≥75 years; Diabetes Mellitus; Stroke; Vascular disease; Age 65-74 years; Sex category) risk score, a clinical probability assessment that includes a combination of risk factors predicting the probability of a stroke. Not all patients with high risk are receiving this treatment. The aim of this study was to assess physician adherence to clinical guidelines concerning the OAC treatment and to identify the factors that were associated with the decision to prescribe it. METHODS: Registry data from 784 patients with non-valvular atrial fibrillation were evaluated in this retrospective cross-sectional study. Demographic data, subtype of AF, comorbidities associated with higher stroke and bleeding risk, and antithrombotic treatment received were recorded. We compared stroke and bleeding risk in patients with and without OAC treatment to determine if the clinicians followed guidelines: prescribed when necessary and abstained when not needed. RESULTS: OAC treatment was administered in 617 (78.7%) patients. Of the 167 patients who did not receive OAC, 161 (96.4%) were undertreated according to their risk score, as opposed to those who received OAC in which the percentage of overtreated was 3.2%. Most undertreated patients (60.5%, p < 0.001) were with paroxysmal atrial fibrillation subtype. CONCLUSIONS: The decision to use anticoagulants for stroke prevention was based on the type of atrial fibrillation, rather than on the risk of stroke as quantified by CHA2DS2-VASc as per the recommended guidelines.


Assuntos
Fibrilação Atrial , Educação Médica , Fibrinolíticos , Fidelidade a Diretrizes , Padrões de Prática Médica , Acidente Vascular Cerebral , Administração Oral , Idoso , Fibrilação Atrial/tratamento farmacológico , Estudos Transversais , Feminino , Fibrinolíticos/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Padrões de Prática Médica/estatística & dados numéricos , Estudos Retrospectivos , Medição de Risco , Fatores de Risco
19.
Exp Mol Pathol ; 86(2): 87-94, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19162005

RESUMO

Proliferation of vascular endothelial cells (EC) and smooth muscle cells (SMC) is a critical event in angiogenesis and atherosclerosis. We previously showed that the C5b-9 assembly during complement activation induces cell cycle in human aortic EC (AEC) and SMC. C5b-9 can induce the expression of Response Gene to Complement (RGC)-32 and over expression of this gene leads to cell cycle activation. Therefore, the present study was carried out to test the requirement of endogenous RGC-32 for the cell cycle activation induced by C5b-9 by knocking-down its expression using siRNA. We identified two RGC-32 siRNAs that can markedly reduce the expression of RGC-32 mRNA in AEC. RGC-32 silencing in these cells abolished DNA synthesis induced by C5b-9 and serum growth factors, indicating the requirement of RGC-32 activity for S-phase entry. RGC-32 siRNA knockdown also significantly reduced the C5b-9 induced CDC2 activation and Akt phosphorylation. CDC2 does not play a role in G1/S transition in HeLa cells stably overexpressing RGC-32. RGC-32 was found to physically associate with Akt and was phosphorylated by Akt in vitro. Mutation of RGC-32 protein at Ser 45 and Ser 47 prevented Akt mediated phosphorylation. In addition, RGC-32 was found to regulate the release of growth factors from AEC. All these data together suggest that cell cycle induction by C5b-9 in AEC is RGC-32 dependent and this is in part through regulation of Akt and growth factor release.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/efeitos dos fármacos , Complexo de Ataque à Membrana do Sistema Complemento/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Adulto , Indutores da Angiogênese/metabolismo , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células Endoteliais/enzimologia , Ativação Enzimática/efeitos dos fármacos , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
20.
Front Immunol ; 10: 1054, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156630

RESUMO

The complement system represents an effective arsenal of innate immunity as well as an interface between innate and adaptive immunity. Activation of the complement system culminates with the assembly of the C5b-9 terminal complement complex on cell membranes, inducing target cell lysis. Translation of this sequence of events into a malignant setting has traditionally afforded C5b-9 a strict antitumoral role, in synergy with antibody-dependent tumor cytolysis. However, in recent decades, a plethora of evidence has revised this view, highlighting the tumor-promoting properties of C5b-9. Sublytic C5b-9 induces cell cycle progression by activating signal transduction pathways (e.g., Gi protein/ phosphatidylinositol 3-kinase (PI3K)/Akt kinase and Ras/Raf1/ERK1) and modulating the activation of cancer-related transcription factors, while shielding malignant cells from apoptosis. C5b-9 also induces Response Gene to Complement (RGC)-32, a gene that contributes to cell cycle regulation by activating the Akt and CDC2 kinases. RGC-32 is expressed by tumor cells and plays a dual role in cancer, functioning as either a tumor promoter by endorsing malignancy initiation, progression, invasion, metastasis, and angiogenesis, or as a tumor suppressor. In this review, we present recent data describing the versatile, multifaceted roles of C5b-9 and its effector, RGC-32, in cancer.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Suscetibilidade a Doenças , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Apoptose/genética , Apoptose/imunologia , Proliferação de Células , Ativação do Complemento/imunologia , Citotoxicidade Imunológica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Neovascularização Patológica/metabolismo , Transdução de Sinais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA