RESUMO
Olefin chemistry, through pericyclic reactions, polymerizations, oxidations, or reductions, has an essential role in the manipulation of organic matter. Despite its importance, olefin synthesis still relies largely on chemistry introduced more than three decades ago, with metathesis being the most recent addition. Here we describe a simple method of accessing olefins with any substitution pattern or geometry from one of the most ubiquitous and variegated building blocks of chemistry: alkyl carboxylic acids. The activating principles used in amide-bond synthesis can therefore be used, with nickel- or iron-based catalysis, to extract carbon dioxide from a carboxylic acid and economically replace it with an organozinc-derived olefin on a molar scale. We prepare more than 60 olefins across a range of substrate classes, and the ability to simplify retrosynthetic analysis is exemplified with the preparation of 16 different natural products across 10 different families.
Assuntos
Alcenos/química , Alcenos/síntese química , Produtos Biológicos/química , Produtos Biológicos/síntese química , Ácidos Carboxílicos/química , Alcenos/classificação , Amidas/química , Produtos Biológicos/classificação , Dióxido de Carbono/química , Dióxido de Carbono/isolamento & purificação , Catálise , Ferro/química , Níquel/química , Oxirredução , Policetídeos/síntese química , Policetídeos/química , Especificidade por Substrato , Tartaratos/síntese química , Tartaratos/química , Zinco/químicaRESUMO
A useful protocol for achieving decarboxylative cross-coupling (DCC) of redox-active esters (RAE, isolated or generated in situ) and halo(hetero)arenes is reported. This pragmatically focused study employs a unique Ag-Ni electrocatalytic platform to overcome numerous limitations that have plagued this strategically powerful transformation. In its optimized form, coupling partners can be combined in a surprisingly simple way: open to the air, using technical-grade solvents, an inexpensive ligand and Ni source, and substoichiometric AgNO3, proceeding at room temperature with a simple commercial potentiostat. Most importantly, all of the results are placed into context by benchmarking with state-of-the-art methods. Applications are presented that simplify synthesis and rapidly enable access to challenging chemical space. Finally, adaptation to multiple scale regimes, ranging from parallel milligram-based synthesis to decagram recirculating flow is presented.
Assuntos
Ésteres , Catálise , Ligantes , Oxirredução , SolventesRESUMO
Myeloperoxidase (MPO) is a heme peroxidase found in neutrophils, monocytes and macrophages that efficiently catalyzes the oxidation of endogenous chloride into hypochlorous acid for antimicrobial activity. Chronic MPO activation can lead to indiscriminate protein modification causing tissue damage, and has been associated with chronic inflammatory diseases, atherosclerosis, and acute cardiovascular events. Triazolopyrimidine 5 is a reversible MPO inhibitor; however it suffers from poor stability in acid, and is an irreversible inhibitor of the DNA repair protein methyl guanine methyl transferase (MGMT). Structure-based drug design was employed to discover benzyl triazolopyridines with improved MPO potency, as well as acid stability, no reactivity with MGMT, and selectivity against thyroid peroxidase (TPO). Structure-activity relationships, a crystal structure of the MPO-inhibitor complex, and acute in vivo pharmacodynamic data are described herein.
Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Peroxidase/antagonistas & inibidores , Piridinas/farmacologia , Triazóis/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Peroxidase/metabolismo , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/químicaRESUMO
A transformation analogous in simplicity and functional group tolerance to the venerable Suzuki cross-coupling between alkyl-carboxylic acids and boronic acids is described. This Ni-catalyzed reaction relies upon the activation of alkyl carboxylic acids as their redox-active ester derivatives, specifically N-hydroxy-tetrachlorophthalimide (TCNHPI), and proceeds in a practical and scalable fashion. The inexpensive nature of the reaction components (NiCl2 â 6 H2 O-$9.5 mol(-1) , Et3 N) coupled to the virtually unlimited commercial catalog of available starting materials bodes well for its rapid adoption.
Assuntos
Ácidos Borônicos/química , Ésteres/química , Níquel/química , Catálise , Estrutura Molecular , OxirreduçãoRESUMO
Clopidogrel is a prodrug anticoagulant with active metabolites that irreversibly inhibit the platelet surface GPCR P2Y12 and thus inhibit platelet activation. However, gaining an understanding of patient response has been limited due to imprecise understanding of metabolite activity and stereochemistry, and a lack of acceptable analytes for quantifying in vivo metabolite formation. Methods for the production of all bioactive metabolites of clopidogrel, their stereochemical assignment, and the development of stable analytes via three conceptually orthogonal routes are disclosed.
Assuntos
Microssomos Hepáticos/metabolismo , Piperidinas/síntese química , Inibidores da Agregação Plaquetária/síntese química , Inibidores da Agregação Plaquetária/metabolismo , Pró-Fármacos/síntese química , Ticlopidina/análogos & derivados , Fenômenos Biológicos , Clopidogrel , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Piperidinas/química , Inibidores da Agregação Plaquetária/química , Pró-Fármacos/química , Estereoisomerismo , Ticlopidina/síntese química , Ticlopidina/química , Ticlopidina/metabolismoRESUMO
A novel series of selective negative allosteric modulators (NAMs) for metabotropic glutamate receptor 5 (mGlu5) was discovered from an isothiazole scaffold. One compound of this series, (1R,2R)-N-(4-(6-isopropylpyridin-2-yl)-3-(2-methyl-2H-indazol-5-yl)isothiazol-5-yl)-2-methylcyclopropanecarboxamide (24), demonstrated satisfactory pharmacokinetic properties and, following oral dosing in rats, produced dose-dependent and long-lasting mGlu5 receptor occupancy. Consistent with the hypothesis that blockade of mGlu5 receptors will produce analgesic effects in mammals, compound 24 produced a dose-dependent reduction in paw licking responses in the formalin model of persistent pain.
Assuntos
Amidas/química , Amidas/farmacologia , Ciclopropanos/química , Ciclopropanos/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Regulação Alostérica/efeitos dos fármacos , Amidas/farmacocinética , Animais , Comportamento Animal/efeitos dos fármacos , Ciclopropanos/farmacocinética , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Indazóis/química , Indazóis/farmacocinética , Indazóis/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/química , Tiazóis/química , Tiazóis/farmacocinética , Tiazóis/farmacologiaRESUMO
Myeloperoxidase, a mammalian peroxidase involved in the immune system as an anti-microbial first responder, can produce hypochlorous acid in response to invading pathogens. Myeloperoxidase has been implicated in several chronic pathological diseases due to the chronic production of hypochlorous acid, as well as other reactive radical species. A high throughput screen and triaging protocol was developed to identify a reversible inhibitor of myeloperoxidase toward the potential treatment of chronic diseases such as atherosclerosis. The identification and characterization of a reversible myeloperoxidase inhibitor, 7-(benzyloxy)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine is described.