Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 168(1-2): 59-72.e13, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28065413

RESUMO

Chromosomal translocations of the mixed-lineage leukemia (MLL) gene with various partner genes result in aggressive leukemia with dismal outcomes. Despite similar expression at the mRNA level from the wild-type and chimeric MLL alleles, the chimeric protein is more stable. We report that UBE2O functions in regulating the stability of wild-type MLL in response to interleukin-1 signaling. Targeting wild-type MLL degradation impedes MLL leukemia cell proliferation, and it downregulates a specific group of target genes of the MLL chimeras and their oncogenic cofactor, the super elongation complex. Pharmacologically inhibiting this pathway substantially delays progression, and it improves survival of murine leukemia through stabilizing wild-type MLL protein, which displaces the MLL chimera from some of its target genes and, therefore, relieves the cellular oncogenic addiction to MLL chimeras. Stabilization of MLL provides us with a paradigm in the development of therapies for aggressive MLL leukemia and perhaps for other cancers caused by translocations.


Assuntos
Leucemia Aguda Bifenotípica/tratamento farmacológico , Leucemia Aguda Bifenotípica/metabolismo , Proteólise/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Leucina Linfoide-Mieloide/metabolismo , Enzimas de Conjugação de Ubiquitina
2.
Genes Dev ; 33(1-2): 61-74, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573454

RESUMO

Chromosomal translocations of the Mixed-lineage leukemia 1 (MLL1) gene generate MLL chimeras that drive the pathogenesis of acute myeloid and lymphoid leukemia. The untranslocated MLL1 is a substrate for proteolytic cleavage by the endopeptidase threonine aspartase 1 (taspase1); however, the biological significance of MLL1 cleavage by this endopeptidase remains unclear. Here, we demonstrate that taspase1-dependent cleavage of MLL1 results in the destabilization of MLL. Upon loss of taspase1, MLL1 association with chromatin is markedly increased due to the stabilization of its unprocessed version, and this stabilization of the uncleaved MLL1 can result in the displacement of MLL chimeras from chromatin in leukemic cells. Casein kinase II (CKII) phosphorylates MLL1 proximal to the taspase1 cleavage site, facilitating its cleavage, and pharmacological inhibition of CKII blocks taspase1-dependent MLL1 processing, increases MLL1 stability, and results in the displacement of the MLL chimeras from chromatin. Accordingly, inhibition of CKII in a MLL-AF9 mouse model of leukemia delayed leukemic progression in vivo. This study provides insights into the direct regulation of the stability of MLL1 through its cleavage by taspase1, which can be harnessed for targeted therapeutic approaches for the treatment of aggressive leukemia as the result of MLL translocations.


Assuntos
Endopeptidases/metabolismo , Leucemia/terapia , Proteína de Leucina Linfoide-Mieloide/genética , Animais , Cromatina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Endopeptidases/genética , Inibidores Enzimáticos/farmacologia , Técnicas de Inativação de Genes , Células HCT116 , Células HEK293 , Humanos , Leucemia/enzimologia , Leucemia/genética , Células MCF-7 , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Estabilidade Proteica , Análise de Sobrevida
3.
Blood ; 142(11): 989-1007, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37172199

RESUMO

Dysregulation of innate immune signaling is a hallmark of hematologic malignancies. Recent therapeutic efforts to subvert aberrant innate immune signaling in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) have focused on the kinase IRAK4. IRAK4 inhibitors have achieved promising, though moderate, responses in preclinical studies and clinical trials for MDS and AML. The reasons underlying the limited responses to IRAK4 inhibitors remain unknown. In this study, we reveal that inhibiting IRAK4 in leukemic cells elicits functional complementation and compensation by its paralog, IRAK1. Using genetic approaches, we demonstrate that cotargeting IRAK1 and IRAK4 is required to suppress leukemic stem/progenitor cell (LSPC) function and induce differentiation in cell lines and patient-derived cells. Although IRAK1 and IRAK4 are presumed to function primarily downstream of the proximal adapter MyD88, we found that complementary and compensatory IRAK1 and IRAK4 dependencies in MDS/AML occur via noncanonical MyD88-independent pathways. Genomic and proteomic analyses revealed that IRAK1 and IRAK4 preserve the undifferentiated state of MDS/AML LSPCs by coordinating a network of pathways, including ones that converge on the polycomb repressive complex 2 complex and JAK-STAT signaling. To translate these findings, we implemented a structure-based design of a potent and selective dual IRAK1 and IRAK4 inhibitor KME-2780. MDS/AML cell lines and patient-derived samples showed significant suppression of LSPCs in xenograft and in vitro studies when treated with KME-2780 as compared with selective IRAK4 inhibitors. Our results provide a mechanistic basis and rationale for cotargeting IRAK1 and IRAK4 for the treatment of cancers, including MDS/AML.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Proteômica , Transdução de Sinais , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Leucemia Mieloide Aguda/genética
4.
Mol Cell ; 65(3): 460-475.e6, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28157506

RESUMO

The spatiotemporal regulation of gene expression is central for cell-lineage specification during embryonic development and is achieved through the combinatorial action of transcription factors/co-factors and epigenetic states at cis-regulatory elements. Here, we show that in addition to implementing H3K4me3 at promoters of bivalent genes, Mll2 (KMT2B)/COMPASS can also implement H3K4me3 at a subset of non-TSS regulatory elements, a subset of which shares epigenetic signatures of active enhancers. Our mechanistic studies reveal that association of Mll2's CXXC domain with CpG-rich regions plays an instrumental role for chromatin targeting and subsequent implementation of H3K4me3. Although Mll2/COMPASS is required for H3K4me3 implementation on thousands of loci, generation of catalytically mutant MLL2/COMPASS demonstrated that H3K4me3 implemented by this enzyme was essential for expression of a subset of genes, including those functioning in the control of transcriptional programs during embryonic development. Our findings suggest that not all H3K4 trimethylations implemented by MLL2/COMPASS are functionally equivalent.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Células Germinativas/citologia , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Especiação Genética , Células Germinativas/metabolismo , Células HEK293 , Histona-Lisina N-Metiltransferase , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas , Domínios Proteicos
6.
Stem Cells ; 34(8): 2130-44, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27096933

RESUMO

The phosphorylated form of Pten (p-Pten) is highly expressed in >70% of acute myeloid leukemia samples. However, the role of p-Pten in normal and abnormal hematopoiesis has not been studied. We found that Pten protein levels are comparable among long-term (LT) hematopoietic stem cells (HSCs), short-term (ST) HSCs, and multipotent progenitors (MPPs); however, the levels of p-Pten are elevated during the HSC-to-MPP transition. To study whether p-Pten is involved in regulating self-renewal and differentiation in HSCs, we compared the effects of overexpression of p-Pten and nonphosphorylated Pten (non-p-Pten) on the hematopoietic reconstitutive capacity (HRC) of HSCs. We found that overexpression of non-p-Pten enhances the LT-HRC of HSCs, whereas overexpression of p-Pten promotes myeloid differentiation and compromises the LT-HRC of HSCs. Such phosphorylation-regulated Pten functioning is mediated by repressing the cell:cell contact-induced activation of Fak/p38 signaling independent of Pten's lipid phosphatase activity because both p-Pten and non-p-Pten have comparable activity in repressing PI3K/Akt signaling. Our studies suggest that, in addition to repressing PI3K/Akt/mTor signaling, non-p-Pten maintains HSCs in bone marrow niches via a cell-contact inhibitory mechanism by inhibiting Fak/p38 signaling-mediated proliferation and differentiation. In contrast, p-Pten promotes the proliferation and differentiation of HSCs by enhancing the cell contact-dependent activation of Src/Fak/p38 signaling. Stem Cells 2016;34:2130-2144.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Nicho de Células-Tronco , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Inibição de Contato , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos Endogâmicos C57BL , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/metabolismo , Invasividade Neoplásica , Fosforilação , Fosfotirosina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Tempo , Transdução Genética , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src/metabolismo
7.
Biochim Biophys Acta ; 1849(8): 979-86, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26066981

RESUMO

Nucleosome assembly following DNA synthesis is critical for maintaining genomic stability. The proteins directly responsible for shuttling newly synthesized histones H3 and H4 from the cytoplasm to the assembly fork during DNA replication comprise the Chromatin Assembly Factor 1 complex (CAF-1). Whereas the diverse functions of the large (CAF-1-p150, CHAF1a) and small (RbAp48, p48) subunits of the CAF-1 complex have been well-characterized in many tissues and extend beyond histone chaperone activity, the contributions of the medium subunit (CAF-1-p60, CHAF1b) are much less well understood. Although it is known that CHAF1b has multiple functional domains (7× WD repeat domain, B-like domain, and a PEST domain), how these components come together to elicit the functions of this protein are still unclear. Here, we review the biology of the CAF-1 complex, with an emphasis on CHAF1b, including its structure, regulation, and function. In addition, we discuss the possible contributions of CHAF1b and the CAF-1 complex to human diseases. Of note, CHAF1b is located within the Down syndrome critical region (DSCR) of chromosome 21. Therefore, we also address the putative contributions of its trisomy to the various manifestations of DS.


Assuntos
Fator 1 de Modelagem da Cromatina/fisiologia , Doença/genética , Homeostase/genética , Animais , Síndrome de Down/genética , Humanos , Neoplasias/genética , Subunidades Proteicas , Fase S/genética
8.
Blood ; 118(23): 6057-67, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21989986

RESUMO

We studied the effects of TNF-α and Fas-induced death signaling in hematopoietic stem and progenitor cells (HSPCs) by examining their contributions to the development of bone marrow failure syndromes in Tak1-knockout mice (Tak1(-/-)). We found that complete inactivation of TNF-α signaling by deleting both of its receptors, 1 and 2 (Tnfr1(-/-)r2(-/-)), can prevent the death of 30% to 40% of Tak1(-/-) HSPCs and partially repress the bone marrow failure phenotype of Tak1(-/-) mice. Fas deletion can prevent the death of 5% to 10% of Tak1(-/-) HSPCs but fails to further improve the survival of Tak1(-/-)Tnfr1(-/-)r2(-/-) HSPCs, suggesting that Fas might induce death within a subset of TNF-α-sensitive HSPCs. This TNF-α/Fas-induced cell death is a type of receptor-interacting protein-1 (RIP-1)-dependent programmed necrosis called necroptosis, which can be prevented by necrostatin-1, a specific RIP-1 inhibitor. In addition, we found that the remaining Tak1(-/-) HSPCs died of apoptosis mediated by the caspase-8-dependent extrinsic apoptotic pathway. This apoptosis can be converted into necroptosis by the inhibition of caspase-8 and prevented by inhibiting both caspase-8 and RIP-1 activities. We concluded that HSPCs are heterogeneous populations in response to death signaling stimulation. Tak1 mediates a critical survival signal, which protects against both TNF-α/Fas-RIP-1-dependent necroptosis and TNF-α/Fas-independent apoptosis in HSPCs.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Células-Tronco Hematopoéticas , Hemoglobinúria Paroxística/metabolismo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Receptor fas/metabolismo , Anemia Aplástica , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Doenças da Medula Óssea , Transtornos da Insuficiência da Medula Óssea , Caspase 3/metabolismo , Caspase 8/metabolismo , Inibidores de Caspase , Diferenciação Celular/fisiologia , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Células-Tronco Hematopoéticas/classificação , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemoglobinúria Paroxística/patologia , Imidazóis/farmacologia , Indóis/farmacologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Knockout , Necrose , Fenótipo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Blood Adv ; 7(17): 4822-4837, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37205848

RESUMO

Acute myeloid leukemia (AML) is an aggressive blood cancer that stems from the rapid expansion of immature leukemic blasts in the bone marrow. Mutations in epigenetic factors represent the largest category of genetic drivers of AML. The chromatin assembly factor CHAF1B is a master epigenetic regulator of transcription associated with self-renewal and the undifferentiated state of AML blasts. Upregulation of CHAF1B, as observed in almost all AML samples, promotes leukemic progression by repressing the transcription of differentiation factors and tumor suppressors. However, the specific factors regulated by CHAF1B and their contributions to leukemogenesis are unstudied. We analyzed RNA sequencing data from mouse MLL-AF9 leukemic cells and bone marrow aspirates, representing a diverse collection of pediatric AML samples and identified the E3 ubiquitin ligase TRIM13 as a target of CHAF1B-mediated transcriptional repression associated with leukemogenesis. We found that CHAF1B binds the promoter of TRIM13, resulting in its transcriptional repression. In turn, TRIM13 suppresses self-renewal of leukemic cells by promoting pernicious entry into the cell cycle through its nuclear localization and catalytic ubiquitination of cell cycle-promoting protein, CCNA1. Overexpression of TRIM13 initially prompted a proliferative burst in AML cells, which was followed by exhaustion, whereas loss of total TRIM13 or deletion of its catalytic domain enhanced leukemogenesis in AML cell lines and patient-derived xenografts. These data suggest that CHAF1B promotes leukemic development, in part, by repressing TRIM13 expression and that this relationship is necessary for leukemic progression.


Assuntos
Montagem e Desmontagem da Cromatina , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Linhagem Celular , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo
10.
Sci Rep ; 12(1): 16146, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167731

RESUMO

Spatially Variant Photonic Crystals (SVPCs) have shown the ability to control the propagation and direction of light in the near-infrared spectrum. Using a novel approach for simplified modeling and fabrication techniques, we designed unique, spatially-varied, unit-cell structures to develop photonic crystals that maintain self-collimation and direction of light for desired beam tuning applications. The finite-difference time-domain technique is used to predict the self-collimation and beam-bending capabilities of our SVPCs. These SVPC designs and the simulation results are verified in laboratory testing. The experimental evidence shows that two-dimensional SVPCs can achieve self-collimation and direct light through sharp bends. The simplicity and quality of these designs show their potential for widespread implementation in modern devices. These SVPCs will serve as a unique solution to optical systems for optical computing, multiplexing, data transfer, and more.

11.
Nat Commun ; 13(1): 2350, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487911

RESUMO

Cell fate commitment is driven by dynamic changes in chromatin architecture and activity of lineage-specific transcription factors (TFs). The chromatin assembly factor-1 (CAF-1) is a histone chaperone that regulates chromatin architecture by facilitating nucleosome assembly during DNA replication. Accumulating evidence supports a substantial role of CAF-1 in cell fate maintenance, but the mechanisms by which CAF-1 restricts lineage choice remain poorly understood. Here, we investigate how CAF-1 influences chromatin dynamics and TF activity during lineage differentiation. We show that CAF-1 suppression triggers rapid differentiation of myeloid stem and progenitor cells into a mixed lineage state. We find that CAF-1 sustains lineage fidelity by controlling chromatin accessibility at specific loci, and limiting the binding of ELF1 TF at newly-accessible diverging regulatory elements. Together, our findings decipher key traits of chromatin accessibility that sustain lineage integrity and point to a powerful strategy for dissecting transcriptional circuits central to cell fate commitment.


Assuntos
Cromatina , Chaperonas de Histonas , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Cromossomos/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo
12.
Sci Rep ; 11(1): 18767, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548516

RESUMO

The self-collimation of light through Photonic Crystals (PCs) due to their optical properties and through a special geometric structure offers a new form of beam steering with highly optical control capabilities for a range of different applications. The objective of this work is to understand self-collimation and bending of light beams through bio-inspired Spatially Variant Photonic Crystals (SVPCs) made from dielectric materials such as silicon dioxide and common polymers used in three-dimensional printing like SU-8. Based upon natural PCs found in animals such as butterflies and fish, the PCs developed in this work can be used to manipulate different wavelengths of light for optical communications, multiplexing, and beam-tuning devices for light detection and ranging applications. In this paper, we show the optical properties and potential applications of two different SVPC designs that can control light through a 90-degree bend and optical logic gates. These two-dimensional SVPC designs were optimized for operation in the near-infrared range of approximately 800-1000 nm for the 90-degree bend and 700-1000 nm for the optical logic gate. These SVPCs were shown to provide high transmission through desired regions with low reflection and absorption of light to prove the potential benefits of these structures for future optical systems.

13.
Cancer Discov ; 11(6): 1398-1410, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33579786

RESUMO

The myeloproliferative neoplasms (MPN) frequently progress to blast phase disease, an aggressive form of acute myeloid leukemia. To identify genes that suppress disease progression, we performed a focused CRISPR/Cas9 screen and discovered that depletion of LKB1/Stk11 led to enhanced in vitro self-renewal of murine MPN cells. Deletion of Stk11 in a mouse MPN model caused rapid lethality with enhanced fibrosis, osteosclerosis, and an accumulation of immature cells in the bone marrow, as well as enhanced engraftment of primary human MPN cells in vivo. LKB1 loss was associated with increased mitochondrial reactive oxygen species and stabilization of HIF1α, and downregulation of LKB1 and increased levels of HIF1α were observed in human blast phase MPN specimens. Of note, we observed strong concordance of pathways that were enriched in murine MPN cells with LKB1 loss with those enriched in blast phase MPN patient specimens, supporting the conclusion that STK11 is a tumor suppressor in the MPNs. SIGNIFICANCE: Progression of the myeloproliferative neoplasms to acute myeloid leukemia occurs in a substantial number of cases, but the genetic basis has been unclear. We discovered that loss of LKB1/STK11 leads to stabilization of HIF1a and promotes disease progression. This observation provides a potential therapeutic avenue for targeting progression.This article is highlighted in the In This Issue feature, p. 1307.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Genes Supressores de Tumor , Leucemia Mieloide Aguda/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Transtornos Mieloproliferativos/genética
14.
Clin Cancer Res ; 25(1): 222-239, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224337

RESUMO

PURPOSE: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease, affecting children and adults. Chemotherapy treatments show high response rates but have debilitating effects and carry risk of relapse. Previous work implicated NOTCH1 and other oncogenes. However, direct inhibition of these pathways affects healthy tissues and cancer alike. Our goal in this work has been to identify enzymes active in T-ALL whose activity could be targeted for therapeutic purposes. EXPERIMENTAL DESIGN: To identify and characterize new NOTCH1 druggable partners in T-ALL, we coupled studies of the NOTCH1 interactome to expression analysis and a series of functional analyses in cell lines, patient samples, and xenograft models. RESULTS: We demonstrate that ubiquitin-specific protease 7 (USP7) interacts with NOTCH1 and controls leukemia growth by stabilizing the levels of NOTCH1 and JMJD3 histone demethylase. USP7 is highly expressed in T-ALL and is transcriptionally regulated by NOTCH1. In turn, USP7 controls NOTCH1 levels through deubiquitination. USP7 binds oncogenic targets and controls gene expression through stabilization of NOTCH1 and JMJD3 and ultimately H3K27me3 changes. We also show that USP7 and NOTCH1 bind T-ALL superenhancers, and inhibition of USP7 leads to a decrease of the transcriptional levels of NOTCH1 targets and significantly blocks T-ALL cell growth in vitro and in vivo. CONCLUSIONS: These results provide a new model for USP7 deubiquitinase activity through recruitment to oncogenic chromatin loci and regulation of both oncogenic transcription factors and chromatin marks to promote leukemia. Our studies also show that targeting USP7 inhibition could be a therapeutic strategy in aggressive leukemia.


Assuntos
Histona Desmetilases com o Domínio Jumonji/genética , Leucemia de Células T/genética , Receptor Notch1/genética , Peptidase 7 Específica de Ubiquitina/genética , Animais , Carcinogênese/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Terapia Genética , Humanos , Células Jurkat , Leucemia de Células T/patologia , Leucemia de Células T/terapia , Camundongos , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Cell ; 34(5): 707-723.e7, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30423293

RESUMO

CHAF1B is the p60 subunit of the chromatin assembly factor (CAF1) complex, which is responsible for assembly of histones H3.1/H4 heterodimers at the replication fork during S phase. Here we report that CHAF1B is required for normal hematopoiesis while its overexpression promotes leukemia. CHAF1B has a pro-leukemia effect by binding chromatin at discrete sites and interfering with occupancy of transcription factors that promote myeloid differentiation, such as CEBPA. Reducing Chaf1b activity by either heterozygous deletion or overexpression of a CAF1 dominant negative allele is sufficient to suppress leukemogenesis in vivo without impairing normal hematopoiesis.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Fator 1 de Modelagem da Cromatina/metabolismo , Cromatina/metabolismo , Hematopoese/fisiologia , Leucemia Mieloide Aguda/patologia , Nucleossomos/metabolismo , Proteínas/metabolismo , Adulto , Animais , Sítios de Ligação/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Fator 1 de Modelagem da Cromatina/genética , Exorribonucleases , Feminino , Hematopoese/genética , Humanos , Células Jurkat , Leucemia Mieloide Aguda/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica/fisiologia , Proteínas/genética , Proteínas Repressoras , Ribonucleases
16.
Oncotarget ; 8(5): 8420-8435, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28039479

RESUMO

We previously reported that autocrine TNF-α (TNF) is responsible for JNK pathway activation in a subset of acute myeloid leukemia (AML) patient samples, providing a survival/proliferation signaling parallel to NF-κB in AML stem cells (LSCs). In this study, we report that most TNF-expressing AML cells (LCs) also express another pro-inflammatory cytokine, IL1ß, which acts in a parallel manner. TNF was produced primarily by LSCs and leukemic progenitors (LPs), whereas IL1ß was mainly produced by partially differentiated leukemic blasts (LBs). IL1ß also stimulates an NF-κB-independent pro-survival and proliferation signal through activation of the JNK pathway. We determined that co-inhibition of signaling stimulated by both TNF and IL1ß synergizes with NF-κB inhibition in eliminating LSCs both ex vivo and in vivo. Our studies show that such treatments are most effective in M4/5 subtypes of AML.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Etanercepte/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1beta/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Nitrilas/farmacologia , Sulfonas/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Interleucina-1beta/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Receptores Tipo II do Fator de Necrose Tumoral/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/metabolismo
18.
Cell Rep ; 10(12): 2055-68, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25801032

RESUMO

Mutations and inactivation of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) are observed in 15%-25% of cases of human T cell acute lymphoblastic leukemia (T-ALL). Pten deletion induces myeloproliferative disorders (MPDs), acute myeloid leukemia (AML), and/or T-ALL in mice. Previous studies attributed Pten-loss-related hematopoietic defects and leukemogenesis to excessive activation of phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling. Although inhibition of this signal dramatically suppresses the growth of PTEN-null T-ALL cells in vitro, treatment with inhibitors of this pathway does not cause a complete remission in vivo. Here, we report that focal adhesion kinase (Fak), a protein substrate of Pten, also contributes to T-ALL development in Pten-null mice. Inactivation of the FAK signaling pathway by either genetic or pharmacologic methods significantly sensitizes both murine and human PTEN-null T-ALL cells to PI3K/AKT/mTOR inhibition when cultured in vitro on feeder layer cells or a matrix and in vivo.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Humanos , Leucemia/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos
19.
PLoS One ; 9(12): e115490, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25526629

RESUMO

Deregulation of Nuclear Transcription Factor-κB (NF-κB) and Jun N-terminal kinase (JNK) signaling is commonly detected in leukemia, suggesting an important role for these two signaling pathways in the pathogenesis of leukemia. In this study, using Jurkat cells, an acute T-lymphoblastic leukemia (T-ALL) cell line, we evaluated the effects of an NF-κB inhibitor and a JNK inhibitor individually and in combination on the proliferation, survival and clonogenic capacity of leukemic cells. We found that leukemic stem/progenitor cells (LSPCs) were more sensitive to NF-κB inhibitor treatment than were healthy hematopoietic stem/progenitor cells (HSPCs), as shown by a reduction in the clonogenic capacity of the former. Inactivation of NF-κB leads to the activation of JNK signaling in both leukemic cells and healthy HSPCs. Interestingly, JNK inhibitor treatment enhanced the repressive effects of NF-κB inhibitor on LSPCs but prevented such repression in HSPCs. Our data suggest that JNK signaling stimulates proliferation/survival in LSPCs but is a death signal in HSPCs. The combination of NF-κB inhibitor and JNK inhibitor might provide a better treatment for T-ALL leukemia by synergistically killing LSPCs while simultaneously preventing the death of normal HPCs.


Assuntos
Antracenos/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Nitrilas/farmacologia , Sulfonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células Jurkat , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo
20.
J Exp Med ; 211(6): 1093-108, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24842373

RESUMO

Leukemic stem cells (LSCs) isolated from acute myeloid leukemia (AML) patients are more sensitive to nuclear factor κB (NF-κB) inhibition-induced cell death when compared with hematopoietic stem and progenitor cells (HSPCs) in in vitro culture. However, inadequate anti-leukemic activity of NF-κB inhibition in vivo suggests the presence of additional survival/proliferative signals that can compensate for NF-κB inhibition. AML subtypes M3, M4, and M5 cells produce endogenous tumor necrosis factor α (TNF). Although stimulating HSPC with TNF promotes necroptosis and apoptosis, similar treatment with AML cells (leukemic cells, LCs) results in an increase in survival and proliferation. We determined that TNF stimulation drives the JNK-AP1 pathway in a manner parallel to NF-κB, leading to the up-regulation of anti-apoptotic genes in LC. We found that we can significantly sensitize LC to NF-κB inhibitor treatment by blocking the TNF-JNK-AP1 signaling pathway. Our data suggest that co-inhibition of both TNF-JNK-AP1 and NF-κB signals may provide a more comprehensive treatment paradigm for AML patients with TNF-expressing LC.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leucemia Mieloide Aguda/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Antracenos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Células K562 , Leucemia Monocítica Aguda/genética , Leucemia Monocítica Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mielomonocítica Aguda/genética , Leucemia Mielomonocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Nitrilas/farmacologia , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sulfonas/farmacologia , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA