Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 326(1): 135-43, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18388257

RESUMO

Patients on a statin regimen have a decreased risk of death due to bacterial sepsis. We have found that protection by simvastatin includes the inhibition of host cell invasion by Staphylococcus aureus, the most common etiologic agent of sepsis. Inhibition was due in part to depletion of isoprenoid intermediates within the cholesterol biosynthesis pathway and led to the cytosolic accumulation of the small GTPases CDC42, Rac, and RhoB. Actin stress fiber disassembly required for host invasion was attenuated by simvastatin and by the inhibition of phosphoinositide 3-kinase (PI3K) activity. PI3K relies on coupling to prenylated proteins, such as this subset of small GTPases, for access to membrane-bound phosphoinositide to mediate stress fiber disassembly. Therefore, we examined whether simvastatin restricts PI3K cellular localization. In response to simvastatin, the PI3K isoform p85, coupled to these small-GTPases, was sequestered within the cytosol. From these findings, we propose a mechanism whereby simvastatin restricts p85 localization, inhibiting the actin dynamics required for bacterial endocytosis. This approach may provide the basis for protection at the level of the host in invasive infections by S. aureus.


Assuntos
Sinvastatina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Terpenos/metabolismo , Linhagem Celular , Células Cultivadas , Humanos , Fatores Hospedeiros de Integração/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Staphylococcus aureus/citologia
2.
Mol Cell Endocrinol ; 454: 23-38, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28576743

RESUMO

BACKGROUND: Basal insulin peglispro (BIL) is a novel, PEGylated insulin lispro that has a large hydrodynamic size compared with insulin lispro. It has a prolonged duration of action, which is related to a delay in insulin absorption and a reduction in clearance. Given the different physical properties of BIL compared with native insulin and insulin lispro, it is important to assess the cellular internalization characteristics of the molecule. METHODS AND MATERIALS: Using immunofluorescent confocal imaging, we compared the cellular internalization and localization patterns of BIL, biosynthetic human insulin, and insulin lispro. We assessed the effects of BIL on internalization of the insulin receptor (IR) and studied cellular clearance of BIL. RESULTS: Co-localization studies using antibodies to either insulin or PEG, and the early endosomal marker EEA1 showed that the overall internalization and subcellular localization pattern of BIL was similar to that of human insulin and insulin lispro; all were rapidly internalized and co-localized with EEA1. During ligand washout for 4 h, concomitant loss of insulin, PEG methoxy group, and PEG backbone immunostaining was observed for BIL, similar to the loss of insulin immunostaining observed for insulin lispro and human insulin. Co-localization studies using an antibody to the lysosomal marker LAMP1 did not reveal evidence of lysosomal localization for insulin lispro, human insulin, BIL, or PEG using either insulin or PEG immunostaining reagents. BIL and human insulin both induced rapid phosphorylation and internalization of human IR. CONCLUSIONS: Our findings show that treatment of cells with BIL stimulates internalization and localization of IR to early endosomes. Both the insulin and PEG moieties of BIL undergo a dynamic cellular process of rapid internalization and transport to early endosomes followed by loss of cellular immunostaining in a manner similar to that of insulin lispro and human insulin. The rate of clearance for the insulin lispro portion of BIL was slower than the rate of clearance for human insulin. In contrast, the PEG moiety of BIL can recycle out of cells.


Assuntos
Endocitose , Insulina Lispro/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Endossomos/metabolismo , Humanos , Ligantes , Lisossomos/metabolismo , Fosforilação , Receptor de Insulina/metabolismo , Transdução de Sinais , Fatores de Tempo
3.
Science ; 317(5837): 516-9, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17588900

RESUMO

The sirtuins are members of the histone deacetylase family of proteins that participate in a variety of cellular functions and play a role in aging. We identified a potent inhibitor of sirtuin 2 (SIRT2) and found that inhibition of SIRT2 rescued alpha-synuclein toxicity and modified inclusion morphology in a cellular model of Parkinson's disease. Genetic inhibition of SIRT2 via small interfering RNA similarly rescued alpha-synuclein toxicity. Furthermore, the inhibitors protected against dopaminergic cell death both in vitro and in a Drosophila model of Parkinson's disease. The results suggest a link between neurodegeneration and aging.


Assuntos
Furanos/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Quinolinas/farmacologia , Sirtuínas/antagonistas & inibidores , Sirtuínas/metabolismo , alfa-Sinucleína/metabolismo , Acetilação , Animais , Animais Geneticamente Modificados , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Modelos Animais de Doenças , Dopamina/fisiologia , Relação Dose-Resposta a Droga , Drosophila melanogaster , Humanos , Modelos Moleculares , Neurônios/citologia , Neurônios/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Conformação Proteica , RNA Interferente Pequeno/genética , Ratos , Sirtuína 1 , Sirtuína 2 , Sirtuínas/química , Sirtuínas/genética , Transfecção , Tubulina (Proteína)/metabolismo , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA