Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 202: 114410, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004320

RESUMO

Surface-exposed calreticulin (CRT) serves as a crucial cell damage-associated molecular pattern for immunogenic apoptosis, by generating an "eat me" signal to macrophages. Aiming at precision immunotherapies we intended to artificially label tumoral cells in vivo with a recombinant CRT, in a targeted way. For that, we have constructed a CRT fusion protein intended to surface attach CXCR4+ cancer cells, to stimulate their immunological destruction. As a targeting ligand of the CRT construct and to drive its specific cell adhesion, we used the peptide V1, a derivative of the vMIP-II cytokine and an antagonist of CXCR4. The modular protein tends to self-assemble as regular 16 nm nanoparticles, assisted by ionic Zn. Through both in vivo and in vitro experiments, we have determined that CRT itself confers cell targeting capabilities to the construct overcoming those of V1, that are only moderate. In particular, CRT binds HeLa cells in absence of further internalization, by a route fully independent of CXCR4. Furthermore, by cytometry in THP-1 cells, we observed that the binding of the protein is preferential for dead cells over live cells, a fact that cannot be associated to a mere artefactual adsorption. These data are discussed in the context of the oligomerizing properties of CRT and the potential clinical applicability of proteins and protein materials functionalized with this novel cell surface ligand.


Assuntos
Calreticulina , Nanopartículas , Receptores CXCR4 , Humanos , Calreticulina/metabolismo , Nanopartículas/química , Células HeLa , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inibidores , Células THP-1 , Animais , Apoptose/efeitos dos fármacos , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/química , Linhagem Celular Tumoral , Adesão Celular/efeitos dos fármacos , Camundongos
2.
ACS Appl Mater Interfaces ; 16(26): 32930-32944, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888932

RESUMO

Protein materials are versatile tools in diverse biomedical fields. Among them, artificial secretory granules (SGs), mimicking those from the endocrine system, act as mechanically stable reservoirs for the sustained release of proteins as oligomeric functional nanoparticles. Only validated in oncology, the physicochemical properties of SGs, along with their combined drug-releasing and scaffolding abilities, make them suitable as smart topographies in regenerative medicine for the prolonged delivery of growth factors (GFs). Thus, considering the need for novel, safe, and cost-effective materials to present GFs, in this study, we aimed to biofabricate a protein platform combining both endocrine-like and extracellular matrix fibronectin-derived (ECM-FN) systems. This approach is based on the sustained delivery of a nanostructured histidine-tagged version of human fibroblast growth factor 2. The GF is presented onto polymeric surfaces, interacting with FN to spontaneously generate nanonetworks that absorb and present the GF in the solid state, to modulate mesenchymal stromal cell (MSC) behavior. The results show that SGs-based topographies trigger high rates of MSCs proliferation while preventing differentiation. While this could be useful in cell therapy manufacture demanding large numbers of unspecialized MSCs, it fully validates the hybrid platform as a convenient setup for the design of biologically active hybrid surfaces and in tissue engineering for the controlled manipulation of mammalian cell growth.


Assuntos
Matriz Extracelular , Fibronectinas , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibronectinas/química , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA