Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 291(41): 21669-21681, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27519412

RESUMO

Melanoma differentiation-associated gene 7 (MDA-7/IL-24) exhibits cytotoxic effects on tumor cells while sparing untransformed cells, and Bcl-x(L) is reported to efficiently block the induction of cell death by MDA-7/IL-24. The expression of Bcl-x(L) is regulated at the level of RNA splicing via alternative 5' splice site selection within exon 2 to produce either the pro-apoptotic Bcl-x(s) or the anti-apoptotic Bcl-x(L). Our laboratory previously reported that Bcl-x RNA splicing is dysregulated in a large percentage of human non-small cell lung cancer (NSCLC) tumors. Therefore, we investigated whether the alternative RNA splicing of Bcl-x pre-mRNA was modulated by MDA-7/IL-24, which would suggest that specific NSCLC tumors are valid targets for this cytokine therapy. Adenovirus-delivered MDA-7/IL-24 (Ad.mda-7) reduced the viability of NSCLC cells of varying oncogenotypes, which was preceded by a decrease in the ratio of Bcl-x(L)/Bcl-x(s) mRNA and Bcl-x(L) protein expression. Importantly, both the expression of Bcl-x(L) and the loss of cell viability were "rescued" in Ad.mda-7-treated cells incubated with Bcl-x(s) siRNA. In addition, NSCLC cells ectopically expressing Bcl-x(s) exhibited significantly reduced Bcl-x(L) expression, which was again restored by Bcl-x(s) siRNA, suggesting the existence of a novel mechanism by which Bcl-x(s) mRNA restrains the expression of Bcl-x(L). In additional mechanistic studies, inhibition of SRC and PKCδ completely ablated the ability of MDA-7/IL-24 to reduce the Bcl-x(L)/(s) mRNA ratio and cell viability. These findings show that Bcl-x(s) expression is an important mediator of MDA-7/IL-24-induced cytotoxicity requiring the SRC/PKCδ signaling axis in NSCLC cells.


Assuntos
Processamento Alternativo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Interleucinas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais , Proteína bcl-X/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Interleucinas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteína Quinase C-delta/genética , Proteínas Proto-Oncogênicas pp60(c-src)/genética , RNA Mensageiro/genética , RNA Neoplásico/genética , Proteína bcl-X/genética
2.
J Biol Chem ; 290(42): 25717-27, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26304115

RESUMO

Triple negative breast cancer (TNBC) represents an anomalous subset of breast cancer with a greatly reduced (30%) 5-year survival rate. The enhanced mortality and morbidity of TNBC arises from the high metastatic rate, which requires the acquisition of AnR, a process whereby anchorage-dependent cells become resistant to cell death induced by detachment. In this study TNBC cell lines were selected for AnR, and these cell lines demonstrated dramatic enhancement in the formation of lung metastases as compared with parental cells. Genetic analysis of the AnR subclones versus parental cells via next generation sequencing and analysis of global alternative RNA splicing identified that the mRNA splicing of cytoplasmic polyadenylation element binding 2 (CPEB2), a translational regulator, was altered in AnR TNBC cells. Specifically, increased inclusion of exon 4 into the mature mRNA to produce the CPEB2B isoform was observed in AnR cell lines. Molecular manipulations of CPEB2 splice variants demonstrated a key role for this RNA splicing event in the resistance of cells to anoikis. Specifically, down-regulation of the CPEB2B isoform using siRNA re-sensitized the AnR cell lines to detachment-induced cell death. The ectopic expression of CPEB2B in parental TNBC cell lines induced AnR and dramatically increased metastatic potential. Importantly, alterations in the alternative splicing of CPEB2 were also observed in human TNBC and additional subtypes of human breast cancer tumors linked to a high metastatic rate. Our findings demonstrate that the regulation of CPEB2 mRNA splicing is a key mechanism in AnR and a driving force in TNBC metastasis.


Assuntos
Processamento Alternativo , Anoikis/fisiologia , Metástase Neoplásica , Proteínas de Ligação a RNA/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Neoplasias de Mama Triplo Negativas/patologia
3.
J Biol Chem ; 288(12): 8575-8584, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23396972

RESUMO

Caspase-9 has two splice variants, pro-apoptotic caspase-9a and anti-apoptotic caspase-9b, which are regulated by RNA trans-factors associated with exon 3 of caspase-9 pre-mRNA (C9/E3). In this study, we identified hnRNP U as an RNA trans-factor associated with C9/E3. Down-regulation of hnRNP U led to a decrease in the caspase-9a/9b mRNA ratio, demonstrating a novel enhancing function. Importantly, hnRNP U bound specifically to C9/E3 at an RNA cis-element previously reported as the binding site for the splicing repressor, hnRNP L. Phosphorylated hnRNP L interfered with hnRNP U binding to C9/E3, and our results demonstrate the importance of the phosphoinositide 3-kinase/AKT pathway in modulating the association of hnRNP U to C9/E3. Taken together, these findings show that hnRNP U competes with hnRNP L for binding to C9/E3 to enhance the inclusion of the four-exon cassette, and this splice-enhancing function is blocked by the AKT pathway via phosphorylation of hnRNP L.


Assuntos
Caspase 9/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Processamento Alternativo , Sequência de Bases , Sítios de Ligação , Caspase 9/metabolismo , Linhagem Celular Tumoral , Éxons , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/fisiologia , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
4.
Sci Signal ; 16(793): eadd6527, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433004

RESUMO

Uncontrolled inflammation is linked to poor outcomes in sepsis and wound healing, both of which proceed through distinct inflammatory and resolution phases. Eicosanoids are a class of bioactive lipids that recruit neutrophils and other innate immune cells. The interaction of ceramide 1-phosphate (C1P) with the eicosanoid biosynthetic enzyme cytosolic phospholipase A2 (cPLA2) reduces the production of a subtype of eicosanoids called oxoeicosanoids. We investigated the effect of shifting the balance in eicosanoid biosynthesis on neutrophil polarization and function. Knockin mice expressing a cPLA2 mutant lacking the C1P binding site (cPLA2αKI/KI mice) showed enhanced and sustained neutrophil infiltration into wounds and the peritoneum during the inflammatory phase of wound healing and sepsis, respectively. The mice exhibited improved wound healing and reduced susceptibility to sepsis, which was associated with an increase in anti-inflammatory N2-type neutrophils demonstrating proresolution behaviors and a decrease in proinflammatory N1-type neutrophils. The N2 polarization of cPLA2αKI/KI neutrophils resulted from increased oxoeicosanoid biosynthesis and autocrine signaling through the oxoeicosanoid receptor OXER1 and partially depended on OXER1-dependent inhibition of the pentose phosphate pathway (PPP). Thus, C1P binding to cPLA2α suppresses neutrophil N2 polarization, thereby impairing wound healing and the response to sepsis.


Assuntos
Neutrófilos , Sepse , Animais , Camundongos , Sepse/genética , Comunicação Autócrina , Fosfolipases A2 do Grupo IV/genética , Inflamação
5.
Mol Cancer Res ; 20(9): 1429-1442, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35560154

RESUMO

Ceramide kinase (CERK) is the mammalian lipid kinase from which the bioactive sphingolipid, ceramide-1-phosphate (C1P), is derived. CERK has been implicated in several promalignant phenotypes with little known as to mechanistic underpinnings. In this study, the mechanism of how CERK inhibition decreases cell survival in mutant (Mut) KRAS non-small cell lung cancer (NSCLC), a major lung cancer subtype, was revealed. Specifically, NSCLC cells possessing a KRAS mutation were more responsive to inhibition, downregulation, and genetic ablation of CERK compared with those with wild-type (WT) KRAS regarding a reduction in cell survival. Inhibition of CERK induced ferroptosis in Mut KRAS NSCLC cells, which required elevating VDAC-regulated mitochondria membrane potential (MMP) and the generation of cellular reactive oxygen species (ROS). Importantly, through modulation of VDAC, CERK inhibition synergized with the first-line NSCLC treatment, cisplatin, in reducing cell survival and in vivo tumor growth. Further mechanistic studies indicated that CERK inhibition affected MMP and cell survival by limiting AKT activation and translocation to mitochondria, and thus, blocking VDAC phosphorylation and tubulin recruitment. IMPLICATIONS: Our findings depict how CERK inhibition may serve as a new key point in combination therapeutic strategy for NSCLC, specifically precision therapeutics targeting NSCLC possessing a KRAS mutation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Ceramidas/farmacologia , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
6.
Mol Cancer Res ; 20(8): 1284-1294, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35412615

RESUMO

Caspase 9 undergoes alternative splicing to produce two opposing isoforms: proapoptotic Caspase 9a and pro-survival Caspase 9b (C9b). Previously, our laboratory reported that C9b is expressed in majority of non-small cell lung cancer tumors and directly activates the NF-κB pathway. In this study, the role of C9b in activation of the NF-κB pathway in vivo, lung inflammation and immune responses, and lung tumorigenesis were examined. Specifically, a transgenic mouse model expressing human C9b in the lung pneumocytes developed inflammatory lung lesions, which correlated with enhanced activation of the NF-κB pathway and increased influx of immunosuppressive myeloid-derived suppressor cells in contrast to wild-type mice. C9b mice presented with facial dermatitis, a thickened and disorganized dermis, enhanced collagen depth, and increased serum levels of IL6. C9b mice also developed spontaneous lung tumors, and C9b cooperated with oncogenic KRAS in lung tumorigenesis. C9b expression also cooperated with oncogenic KRAS and p53 downregulation to drive the full cell transformation of human bronchial epithelial cells (e.g., tumor formation). IMPLICATIONS: Our findings show that C9b can directly activate NF-κB pathway in vivo to modulate lung inflammation, immune cell influx, and peripheral immune responses, which demonstrates that C9b is key factor in driving cell transformation and lung tumorigenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Caspase 9 , Neoplasias Pulmonares , Pneumonia , Animais , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Caspase 9/genética , Transformação Celular Neoplásica/metabolismo , Humanos , Inflamação/genética , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , NF-kappa B/metabolismo , Pneumonia/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
7.
Elife ; 82019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31050338

RESUMO

Ca2+-stimulated translocation of cytosolic phospholipase A2α (cPLA2α) to the Golgi induces arachidonic acid production, the rate-limiting step in pro-inflammatory eicosanoid synthesis. Structural insights into the cPLA2α preference for phosphatidylcholine (PC)-enriched membranes have remained elusive. Here, we report the structure of the cPLA2α C2-domain (at 2.2 Å resolution), which contains bound 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) and Ca2+ ions. Two Ca2+ are complexed at previously reported locations in the lipid-free C2-domain. One of these Ca2+ions, along with a third Ca2+, bridges the C2-domain to the DHPC phosphate group, which also interacts with Asn65. Tyr96 plays a key role in lipid headgroup recognition via cation-π interaction with the PC trimethylammonium group. Mutagenesis analyses confirm that Tyr96 and Asn65 function in PC binding selectivity by the C2-domain and in the regulation of cPLA2α activity. The DHPC-binding mode of the cPLA2α C2-domain, which differs from phosphatidylserine or phosphatidylinositol 4,5-bisphosphate binding by other C2-domains, expands and deepens knowledge of the lipid-binding mechanisms mediated by C2-domains.


Assuntos
Cálcio/metabolismo , Fosfolipases A2 do Grupo IV/química , Fosfolipases A2 do Grupo IV/metabolismo , Fosfatidilcolinas/metabolismo , Substituição de Aminoácidos , Cátions Bivalentes/metabolismo , Análise Mutacional de DNA , Fosfolipases A2 do Grupo IV/genética , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
8.
Cancer Res ; 76(10): 2977-89, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27197231

RESUMO

Alternate RNA processing of caspase-9 generates the splice variants caspase 9a (C9a) and caspase 9b (C9b). C9b lacks a domain present in C9a, revealing a tumorigenic function that drives the phenotype of non-small cell lung cancer (NSCLC) cells. In this study, we elucidated the mechanistic underpinnings of the malignant character of this splice isoform. In NSCLC cells, C9b expression correlated with activation of the canonical arm of the NF-κB pathway, a major pathway linked to the NSCLC tumorigenesis. Mechanistic investigations revealed that C9b activates this pathway via direct interaction with cellular inhibitor of apoptosis 1 (cIAP1) and subsequent induction of the E3 ligase activity of this IAP family member. The C9b:cIAP1 interaction occurred via the BIR3 domain of cIAP1 and the IAP-binding motif of C9b, but did not require proteolytic cleavage of C9b. This protein:protein interaction was essential for C9b to promote viability and malignant growth of NSCLC cells in vitro and in vivo, broadly translating to diverse NSCLC oncogenotypes. Overall, our findings identified a novel point for therapeutic invention in NSCLC that may be tractable to small-molecule inhibitors, as a new point to broadly address this widespread deadly disease. Cancer Res; 76(10); 2977-89. ©2016 AACR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Caspase 9/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Animais , Apoptose , Western Blotting , Carcinogênese , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Caspase 9/genética , Proliferação de Células , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Proteínas Inibidoras de Apoptose/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos SCID , NF-kappa B/genética , Ligação Proteica , Proteólise , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA