Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012572

RESUMO

Cell death plays an important role in diabetes-induced liver dysfunction. Ferroptosis is a newly defined regulated cell death caused by iron-dependent lipid peroxidation. Our previous studies have shown that high glucose and streptozotocin (STZ) cause ß-cell death through ferroptosis and that ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, improves ß-cell viability, islet morphology, and function. This study was aimed to examine in vivo the involvement of ferroptosis in diabetes-related pathological changes in the liver. For this purpose, male C57BL/6 mice, in which diabetes was induced with STZ (40 mg/kg/5 consecutive days), were treated with Fer-1 (1 mg/kg, from day 1-21 day). It was found that in diabetic mice Fer-1 improved serum levels of ALT and triglycerides and decreased liver fibrosis, hepatocytes size, and binucleation. This improvement was due to the Fer-1-induced attenuation of ferroptotic events in the liver of diabetic mice, such as accumulation of pro-oxidative parameters (iron, lipofuscin, 4-HNE), decrease in expression level/activity of antioxidative defense-related molecules (GPX4, Nrf2, xCT, GSH, GCL, HO-1, SOD), and HMGB1 translocation from nucleus into cytosol. We concluded that ferroptosis contributes to diabetes-related pathological changes in the liver and that the targeting of ferroptosis represents a promising approach in the management of diabetes-induced liver injury.


Assuntos
Diabetes Mellitus Experimental , Ferroptose , Animais , Diabetes Mellitus Experimental/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Adv Exp Med Biol ; 1301: 7-24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34370285

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers with a dismal 5-year survival rate of 5% and very limited efficacy of the current therapeutic regimens. The lethality of PDAC stems from asymptomatic early stage of the disease, its propensity to rapidly disseminate, as well as unusual, dense and highly active surrounding stroma. Fortunately, promising literature data suggests that exploiting newly contextualized type of cell death, termed "ferroptosis", has great potential for overcoming the major problems regarding PDAC treatment. A major player in this type of cell death is Glutamate/Cystine antiporter - xCT, which is responsible for the uptake of oxidized form of cysteine, and thus maintenance of intracellular amino acid and redox homeostasis. xCT seems to fulfill all requirements of the solid and specific molecular target for ferroptosis-based anti-cancer therapy. In this chapter we summarized mounting literature data supporting this hypothesis, but also, we pointed out some of the underexamined aspects of xCT-dependent (patho)physiology of the cancer cell, which have to be addressed in future studies. The abstract could be used as "informative abstract" for the online version.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Morte Celular , Cistina/metabolismo , Humanos , Oxirredução , Neoplasias Pancreáticas/tratamento farmacológico
3.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375025

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) integrates signals from growth factors and nutrients to control biosynthetic processes, including protein, lipid, and nucleic acid synthesis. Dysregulation in the mTORC1 network underlies a wide array of pathological states, including metabolic diseases, neurological disorders, and cancer. Tumor cells are characterized by uncontrolled growth and proliferation due to a reduced dependency on exogenous growth factors. The genetic events underlying this property, such as mutations in the PI3K-Akt and Ras-Erk signaling networks, lead to constitutive activation of mTORC1 in nearly all human cancer lineages. Aberrant activation of mTORC1 has been shown to play a key role for both anabolic tumor growth and resistance to targeted therapeutics. While displaying a growth factor-independent mTORC1 activity and proliferation, tumors cells remain dependent on exogenous nutrients such as amino acids (AAs). AAs are an essential class of nutrients that are obligatory for the survival of any cell. Known as the building blocks of proteins, AAs also act as essential metabolites for numerous biosynthetic processes such as fatty acids, membrane lipids and nucleotides synthesis, as well as for maintaining redox homeostasis. In most tumor types, mTORC1 activity is particularly sensitive to intracellular AA levels. This dependency, therefore, creates a targetable vulnerability point as cancer cells become dependent on AA transporters to sustain their homeostasis. The following review will discuss the role of AA transporters for mTORC1 signaling in cancer cells and their potential as therapeutic drug targets.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/metabolismo , Transdução de Sinais/fisiologia , Sistemas de Transporte de Aminoácidos/genética , Animais , Proliferação de Células/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mutação , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
4.
J Biol Chem ; 293(8): 2877-2887, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29326164

RESUMO

The transporters for glutamine and essential amino acids, ASCT2 (solute carrier family 1 member 5, SLC1A5) and LAT1 (solute carrier family 7 member 5, SLC7A5), respectively, are overexpressed in aggressive cancers and have been identified as cancer-promoting targets. Moreover, previous work has suggested that glutamine influx via ASCT2 triggers essential amino acids entry via the LAT1 exchanger, thus activating mechanistic target of rapamycin complex 1 (mTORC1) and stimulating growth. Here, to further investigate whether these two transporters are functionally coupled, we compared the respective knockout (KO) of either LAT1 or ASCT2 in colon (LS174T) and lung (A549) adenocarcinoma cell lines. Although ASCT2KO significantly reduced glutamine import (>60% reduction), no impact on leucine uptake was observed in both cell lines. Although an in vitro growth-reduction phenotype was observed in A549-ASCT2KO cells only, we found that genetic disruption of ASCT2 strongly decreased tumor growth in both cell lines. However, in sharp contrast to LAT1KO cells, ASCT2KO cells displayed no amino acid (AA) stress response (GCN2/EIF2a/ATF4) or altered mTORC1 activity (S6K1/S6). We therefore conclude that ASCT2KO reduces tumor growth by limiting AA import, but that this effect is independent of LAT1 activity. These data were further supported by in vitro cell proliferation experiments performed in the absence of glutamine. Together these results confirm and extend ASCT2's pro-tumoral role and indicate that the proposed functional coupling model of ASCT2 and LAT1 is not universal across different cancer types.


Assuntos
Adenocarcinoma/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo , Neoplasias do Colo/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Neoplasias Pulmonares/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas de Neoplasias/metabolismo , Absorção Fisiológica/efeitos dos fármacos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Antineoplásicos/farmacologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células , Células Clonais , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Feminino , Deleção de Genes , Técnicas de Inativação de Genes , Glutamina/metabolismo , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/química , Transportador 1 de Aminoácidos Neutros Grandes/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/agonistas , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Moduladores de Transporte de Membrana/farmacologia , Camundongos Nus , Antígenos de Histocompatibilidade Menor/genética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
5.
Reprod Fertil Dev ; 28(3): 319-27, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25033890

RESUMO

Developmental dysfunction in embryos, such as a lethal level of fragmentation, is assumed to be mitochondrial in origin. This study investigated the molecular basis of mitochondrial impairment in embryo fragmentation. Transcription patterns of factors that determine mitochondrial functionality: (i) components of the oxidative phosphorylation (OXPHOS) - complex I, cytochrome b, complex IV and ATP synthase; (ii) mitochondrial membrane potential (MMP); (iii) mitochondrial DNA (mtDNA) content and (iv) proteins involved in mitochondrial dynamics, mitofusin 1 (Mfn1) and dynamin related protein 1 (Drp1) were examined in six-cells Day 3 non-fragmented (control), low-fragmented (LF) and high-fragmented (HF) human embryos. Gene expression of mitochondria-encoded components of complex I and IV, cytochrome b and mtDNA were increased in HF embryos compared with control and LF embryos. In LF embryos, expression of these molecules was decreased compared with control and HF embryos. Both classes of fragmented embryos had decreased MMP compared with control. LF embryos had increased gene expression of Mfn1 accompanied by decreased expression of Drp1, while HF embryos had decreased Mfn1 expression but increased Drp1 expression. The study revealed that each improper transcriptional (in)activation of mitochondria-encoded components of the OXPHOS during early in vitro embryo development is associated with a decrease in MMP and with embryo fragmentation. The results also showed the importance of mitochondrial dynamics in fragmentation, at least in the extent of this process.


Assuntos
Blastocisto/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Blastocisto/ultraestrutura , Citocromos b/genética , Citocromos b/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Dinaminas , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Técnicas de Cultura Embrionária , Fertilização in vitro , GTP Fosfo-Hidrolases/genética , Regulação da Expressão Gênica , Humanos , Potencial da Membrana Mitocondrial , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transcrição Gênica , Ativação Transcricional
7.
Eur J Nutr ; 53(3): 813-21, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24100601

RESUMO

BACKGROUND AND AIMS: Nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) are important intestinal neurotransmitters that coexist in the gut enteric nervous system and play an important role in intestinal physiology (e.g., absorption, motility, fluid secretion and smooth muscle relaxation). It is also known that cold exposure alters several aspects of gastrointestinal physiology and induces hyperphagia to meet increased metabolic demands, but there are no data regarding NO and VIP involvement in intestinal response during acclimation to cold. The objective of this study was to determine the influence of long-term L-arginine supplementation on the expression of the three isoforms of nitric oxide synthase (NOS) and VIP in small intestine of rats acclimated to room temperature or cold. METHODS: Animals (six per group) acclimated to room temperature (22 ± 1 °C) and cold (4 ± 1 °C), respectively, were treated with 2.25% L-arginine, a substrate for NOSs, or with 0.01% N(ω)-nitro-L-arginine methyl ester, an inhibitor of NOSs, for 45 days. The topographical distribution of VIP and NOSs expression in small intestine was studied by immunohistochemistry, and ImageJ software was used for semiquantitative densitometric analysis of their immunoexpression. RESULTS: Long-term dietary L-arginine supplementation increases VIP and NOSs immunoexpression at room temperature while at cold increases the endothelial NOS, inducible NOS and VIP but decrease neuronal NOS in rat small intestine. CONCLUSION: Our results demonstrate that long-term dietary L-arginine supplementation modulates NOSs and VIP immunoexpression in rat small intestine with respect to ambient temperature, pointing out the eNOS as a predominant NOS isoform with an immunoexpression pattern similar to VIP.


Assuntos
Arginina/metabolismo , Suplementos Nutricionais , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Regulação para Cima , Peptídeo Intestinal Vasoativo/agonistas , Adaptação Fisiológica/efeitos dos fármacos , Animais , Arginina/antagonistas & inibidores , Temperatura Baixa/efeitos adversos , Cruzamentos Genéticos , Enterócitos/citologia , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Inibidores Enzimáticos/farmacologia , Imuno-Histoquímica , Células Intersticiais de Cajal/citologia , Células Intersticiais de Cajal/efeitos dos fármacos , Células Intersticiais de Cajal/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Intestino Delgado/citologia , Intestino Delgado/efeitos dos fármacos , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/química , Ratos , Regulação para Cima/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/metabolismo
8.
J Vis Exp ; (205)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557602

RESUMO

The interaction of iron and oxygen is an integral part of the development of life on Earth. Nonetheless, this unique chemistry continues to fascinate and puzzle, leading to new biological ventures. In 2012, a Columbia University group recognized this interaction as a central event leading to a new type of regulated cell death named "ferroptosis." The major feature of ferroptosis is the accumulation of lipid hydroperoxides due to (1) dysfunctional antioxidant defense and/or (2) overwhelming oxidative stress, which most frequently coincides with increased content of free labile iron in the cell. This is normally prevented by the canonical anti-ferroptotic axis comprising the cystine transporter xCT, glutathione (GSH), and GSH peroxidase 4 (GPx4). Since ferroptosis is not a programmed type of cell death, it does not involve signaling pathways characteristic of apoptosis. The most common way to prove this type of cell death is by using lipophilic antioxidants (vitamin E, ferrostatin-1, etc.) to prevent it. These molecules can approach and detoxify oxidative damage in the plasma membrane. Another important aspect in revealing the ferroptotic phenotype is detecting the preceding accumulation of lipid hydroperoxides, for which the specific dye BODIPY C11 is used. The present manuscript will show how ferroptosis can be induced in wild-type medulloblastoma cells by using different inducers: erastin, RSL3, and iron-donor. Similarly, the xCT-KO cells that grow in the presence of NAC, and which undergo ferroptosis once NAC is removed, will be used. The characteristic "bubbling" phenotype is visible under the light microscope within 12-16 h from the moment of ferroptosis triggering. Furthermore, BODIPY C11 staining followed by FACS analysis to show the accumulation of lipid hydroperoxides and consequent cell death using the PI staining method will be used. To prove the ferroptotic nature of cell death, ferrostatin-1 will be used as a specific ferroptosis-preventing agent.


Assuntos
Compostos de Boro , Neoplasias Cerebelares , Cicloexilaminas , Meduloblastoma , Fenilenodiaminas , Humanos , Peroxidação de Lipídeos/fisiologia , Antioxidantes/farmacologia , Ferro/metabolismo , Glutationa/metabolismo , Peróxidos Lipídicos , Fenótipo
9.
Biofactors ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299761

RESUMO

Recently, we characterized the ferroptotic phenotype in the liver of diabetic mice and revealed nuclear factor (erythroid-derived-2)-related factor 2 (Nrf2) inactivation as an integral part of hepatic injury. Here, we aim to investigate whether sulforaphane, an Nrf2 activator and antioxidant, prevents diabetes-induced hepatic ferroptosis and the mechanisms involved. Male C57BL/6 mice were divided into four groups: control (vehicle-treated), diabetic (streptozotocin-induced; 40 mg/kg, from Days 1 to 5), diabetic sulforaphane-treated (2.5 mg/kg from Days 1 to 42) and non-diabetic sulforaphane-treated group (2.5 mg/kg from Days 1 to 42). Results showed that diabetes-induced inactivation of Nrf2 and decreased expression of its downstream antiferroptotic molecules critical for antioxidative defense (catalase, superoxide dismutases, thioredoxin reductase), iron metabolism (ferritin heavy chain (FTH1), ferroportin 1), glutathione (GSH) synthesis (cystine-glutamate antiporter system, cystathionase, glutamate-cysteine ligase catalitic subunit, glutamate-cysteine ligase modifier subunit, glutathione synthetase), and GSH recycling - glutathione reductase (GR) were reversed/increased by sulforaphane treatment. In addition, we found that the ferroptotic phenotype in diabetic liver is associated with increased ferritinophagy and decreased FTH1 immunopositivity. The antiferroptotic effect of sulforaphane was further evidenced through the increased level of GSH, decreased accumulation of labile iron and lipid peroxides (4-hydroxy-2-nonenal, lipofuscin), decreased ferritinophagy and liver damage (decreased fibrosis, alanine aminotransferase, and aspartate aminotransferase). Finally, diabetes-induced increase in serum glucose and triglyceride level was significantly reduced by sulforaphane. Regardless of the fact that this study is limited by the use of one model of experimentally induced diabetes, the results obtained demonstrate for the first time that sulforaphane prevents diabetes-induced hepatic ferroptosis in vivo through the activation of Nrf2 signaling pathways. This nominates sulforaphane as a promising phytopharmaceutical for the prevention/alleviation of ferroptosis in diabetes-related pathologies.

10.
J Exp Biol ; 216(Pt 22): 4233-41, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23948478

RESUMO

This study examined the molecular basis of energy-related regulatory mechanisms underlying metabolic recruitment of skeletal muscle during cold acclimation and possible involvement of the l-arginine/nitric oxide-producing pathway. Rats exposed to cold (4±1°C) for periods of 1, 3, 7, 12, 21 and 45 days were divided into three groups: untreated, l-arginine treated and N(ω)-nitro-l-arginine methyl ester (l-NAME) treated. Compared with controls (22±1°C), there was an initial increase in the protein level of 5'-AMP-activated protein kinase α (day 1), followed by an increase in peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and peroxisome proliferator-activated receptors (PPARs): PPARα and PPARγ from day 1 and PPARδ from day 7 of cold acclimation. Activation of the PGC-1α/PPAR transcription program was accompanied by increased protein expression of the key metabolic enzymes in ß-oxidation, the tricarboxylic acid cycle and oxidative phosphorylation, with the exceptions in complex I (no changes) and ATP synthase (decreased at day 1). Cold did not affect hexokinase and GAPDH protein levels, but increased lactate dehydrogenase activity compared with controls (1-45 days). l-arginine sustained, accelerated and/or intensified cold-induced molecular remodeling throughout cold acclimation. l-NAME exerted phase-dependent effects: similar to l-arginine in early cold acclimation and opposite after prolonged cold exposure (from day 21). It seems that upregulation of the PGC-1α/PPAR transcription program early during cold acclimation triggers the molecular recruitment of skeletal muscle underlying the shift to more oxidative metabolism during prolonged cold acclimation. Our results suggest that nitric oxide has a role in maintaining the skeletal muscle oxidative phenotype in late cold acclimation but question its role early in cold acclimation.


Assuntos
Aclimatação/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica/fisiologia , Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Análise de Variância , Animais , Arginina/farmacologia , Western Blotting , Estudos de Casos e Controles , Eletroforese em Gel de Poliacrilamida , Músculo Esquelético/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Fatores de Tempo
11.
Biochim Biophys Acta ; 1810(12): 1252-61, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21945600

RESUMO

BACKGROUND: Brown adipose tissue thermogenic program includes complex molecular and structural changes. However, energetic aspects of this process are poorly depicted. METHODS: We investigated time-dependent reprogramming of interscapular brown adipose tissue (IBAT) energy metabolism during cold-acclimation, as well as the effects of nitric oxide (()NO) on those changes. Rats were exposed to cold (4±1°C) for periods of 1, 3, 7, 12, 21, and 45days, and divided into three groups: control, treated with L-arginine, and treated with N(ω)-nitro-L-arginine methyl ester (L-NAME). RESULTS: In the early phase of cold-acclimation (up to 7days), the protein levels of all metabolic parameters and oxidative phosphorylation components were below the control. However, metabolic parameters and respiratory chain components entered a new homeostatic level in the late phase of cold-acclimation. These changes were accompanied with increased protein levels of phospho-AMP-dependent protein kinase-α (phospho-AMPKα) on the first day of cold-acclimation, and hypoxia-inducible factor-1α (HIF-1α) throughout early cold-acclimation. L-arginine positively affected protein expression of enzymes involved in glucose metabolism and ß-oxidation of fatty acids in the early phase of cold-acclimation, and oxidative phosphorylation components throughout cold-acclimation. In contrast, L-NAME had the opposite effects. CONCLUSION: Results suggest that IBAT structural remodeling is followed by energy metabolism reprogramming, which control might be orchestrated by the action of AMPKα and HIF-1α. Data also indicated the involvement of L-arginine-()NO in the regulation of IBAT metabolism. GENERAL SIGNIFICANCE: Results obtained in this study might be of great importance for elucidating regulatory pathways governing energy metabolism in both physiological and pathophysiological states.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adaptação Fisiológica , Tecido Adiposo Marrom/metabolismo , Temperatura Baixa , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Western Blotting , Ciclo do Ácido Cítrico , Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Glucose/metabolismo , Masculino , Microscopia Eletrônica , Fosforilação Oxidativa , Ratos
12.
Cell Physiol Biochem ; 29(1-2): 131-42, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22415082

RESUMO

BACKGROUND/AIMS: Study elucidates and compares the mitochondrial bioenergetic-related molecular basis of sevoflurane and propofol cardioprotection during aortic valve replacement surgery due to aortic valve stenosis. METHODS: Twenty-two patients were prospectively randomized in two groups regarding the anesthetic regime: sevoflurane and propofol. Hemodynamic parameters, biomarkers of cardiac injury and brain natriuretic peptide (BNP) were measured preoperatively and postoperatively. In tissue samples, taken from the interventricular septum, key mitochondrial molecules were determined by Western blot, real time PCR, as well as confocal microscopy and immunohisto- and immunocyto-chemical analysis. RESULTS: The protein levels of cytochrome c oxidase and ATP synthase were higher in sevoflurane than in propofol group. Nevertheless, cytochrome c protein content was higher in propofol than sevoflurane receiving patients. Propofol group also showed higher protein level of connexin 43 (Cx43) than sevoflurane group. Besides, immunogold analysis showed its mitochondrial localization. The mRNA level of mtDNA and uncoupling protein (UCP2) were higher in propofol than sevoflurane patients, as well. On the other hand, there were no significant differences between groups in hemodynamic assessment, intensive care unit length of stay, troponin I and BNP level. CONCLUSIONS: Our data indicate that sevoflurane and propofol lead to cardiac protection via different mitochondrially related molecular mechanisms. It appears that sevoflurane acts regulating cytochrome c oxidase and ATP synthase, while the effects of propofol occur through regulation of cytochrome c, Cx43, mtDNA transcription and UCP2.


Assuntos
Anestésicos/uso terapêutico , Estenose da Valva Aórtica/cirurgia , Valva Aórtica/transplante , Ponte Cardiopulmonar , Éteres Metílicos/uso terapêutico , Mitocôndrias/metabolismo , Propofol/uso terapêutico , Complexos de ATP Sintetase/genética , Complexos de ATP Sintetase/metabolismo , Idoso , Estenose da Valva Aórtica/tratamento farmacológico , Estenose da Valva Aórtica/patologia , Conexina 43/genética , Conexina 43/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Hemodinâmica , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Estudos Prospectivos , Sevoflurano , Troponina I/genética , Troponina I/metabolismo , Proteína Desacopladora 2
13.
Mol Cell Biochem ; 368(1-2): 189-93, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22729739

RESUMO

In this study, the effects of L-arginine-nitric-oxide ((∙)NO)-producing pathway on protein content of ubiquitin, as an important component of ubiquitin-proteasome system for protein removal, were investigated. We showed that L-arginine markedly decreased ubiquitin protein content in interscapular brown adipose tissue, both in thermogenic inactive (at room temperature) and thermogenic active (on cold) states; while in L-NAME-treated groups this effect was abolished. This result suggests that nitric oxide ((∙)NO), besides well established roles, is involved in this aspect of structure remodeling, as well.


Assuntos
Aclimatação/fisiologia , Tecido Adiposo Marrom/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica/fisiologia , Óxido Nítrico/metabolismo , Biossíntese de Proteínas/fisiologia , Ubiquitina/biossíntese , Animais , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Ratos
14.
Indian J Biochem Biophys ; 49(2): 97-100, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22650006

RESUMO

Diabetes and renal insufficiency are interrelated metabolic disorders closely associated with redox homeostasis disturbances. The aim of this study was to compare the activity of copper zinc superoxide dismutase (CuZnSOD) in the erythrocytes of hypertensive diabetic patients with or without renal insufficiency with normal healthy control subjects. In both groups of diabetic patients, blood glucose level and the content of glycosylated hemoglobin (HbA1c) were higher than in the control group. However, CuZnSOD activity was significantly higher than control only in hypertensive diabetic patients with renal insufficiency. Our results suggest that disturbances in superoxide homeostasis do correlate with long-term complication in diabetes, i.e. diabetic renal insufficiency and hypertension.


Assuntos
Complicações do Diabetes/complicações , Hipertensão/complicações , Insuficiência Renal/complicações , Insuficiência Renal/enzimologia , Superóxido Dismutase/metabolismo , Idoso , Glicemia/metabolismo , Estudos de Casos e Controles , Catalase/metabolismo , Eritrócitos/enzimologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência Renal/sangue , Superóxido Dismutase/sangue
15.
Cancers (Basel) ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35804926

RESUMO

The conceptualization of a novel type of cell death, called ferroptosis, opens new avenues for the development of more efficient anti-cancer therapeutics. In this context, a full understanding of the ferroptotic pathways, the players involved, their precise role, and dispensability is prerequisite. Here, we focused on the importance of glutathione (GSH) for ferroptosis prevention in pancreatic ductal adenocarcinoma (PDAC) cells. We genetically deleted a unique, rate-limiting enzyme for GSH biosynthesis, γ-glutamylcysteine ligase (GCL), which plays a key role in tumor cell proliferation and survival. Surprisingly, although glutathione peroxidase 4 (GPx4) has been described as a guardian of ferroptosis, depletion of its substrate (GSH) led preferentially to apoptotic cell death, while classical ferroptotic markers (lipid hydroperoxides) have not been observed. Furthermore, the sensitivity of PDAC cells to the pharmacological/genetic inhibition of GPx4 revealed GSH dispensability in this context. To the best of our knowledge, this is the first time that the complete dissection of the xCT-GSH-GPx4 axis in PDAC cells has been investigated in great detail. Collectively, our results revealed the necessary role of GSH in the overall redox homeostasis of PDAC cells, as well as the dispensability of this redox-active molecule for a specific, antioxidant branch dedicated to ferroptosis prevention.

16.
Antioxidants (Basel) ; 11(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36552620

RESUMO

Glutathione peroxidase 4 (GPX4) has been reported as one of the major targets for ferroptosis induction, due to its pivotal role in lipid hydroperoxide removal. However, recent studies pointed toward alternative antioxidant systems in this context, such as the Coenzyme Q-FSP1 pathway. To investigate how effective these alternative pathways are in different cellular contexts, we used human colon adenocarcinoma (CRC) cells, highly resistant to GPX4 inhibition. Data obtained in the study showed that simultaneous pharmacological inhibition of GPX4 and FSP1 strongly compromised the survival of the CRC cells, which was prevented by the ferroptosis inhibitor, ferrostatin-1. Nonetheless, this could not be phenocopied by genetic deletion of FSP1, suggesting the development of resistance to ferroptosis in FSP1-KO CRC cells. Considering that CRC cells are highly glycolytic, we used CRC Warburg-incompetent cells, to investigate the role metabolism plays in this phenomenon. Indeed, the sensitivity to inhibition of both anti-ferroptotic axes (GPx4 and FSP1) was fully revealed in these cells, showing typical features of ferroptosis. Collectively, data indicate that two independent anti-ferroptotic pathways (GPX4-GSH and CoQ10-FSP1) operate within the overall physiological context of cancer cells and in some instances, their inhibition should be coupled with other metabolic modulators, such as inhibitors of glycolysis/Warburg effect.

17.
Oxid Med Cell Longev ; 2022: 3873420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320979

RESUMO

The main pathological hallmark of diabetes is the loss of functional ß-cells. Among several types of ß-cell death in diabetes, the involvement of ferroptosis remains elusive. Therefore, we investigated the potential of diabetes-mimicking factors: high glucose (HG), proinflammatory cytokines, hydrogen peroxide (H2O2), or diabetogenic agent streptozotocin (STZ) to induce ferroptosis of ß-cells in vitro. Furthermore, we tested the contribution of ferroptosis to injury of pancreatic islets in an STZ-induced in vivo diabetic model. All in vitro treatments increased loss of Rin-5F cells along with the accumulation of reactive oxygen species, lipid peroxides and iron, inactivation of NF-E2-related factor 2 (Nrf2), and decrease in glutathione peroxidase 4 expression and mitochondrial membrane potential (MMP). Ferrostatin 1 (Fer-1), ferroptosis inhibitor, diminished the above-stated effects and rescued cells from death in case of HG, STZ, and H2O2 treatments, while failed to increase MMP and to attenuate cell death after the cytokines' treatment. Moreover, Fer-1 protected pancreatic islets from STZ-induced injury in diabetic in vivo model, since it decreased infiltration of macrophages and accumulation of lipid peroxides and increased the population of insulin-positive cells. Such results revealed differences between diabetogenic stimuli in determining the destiny of ß-cells, emerging HG, H2O2, and STZ, but not cytokines, as contributing factors to ferroptosis and shed new light on an antidiabetic strategy based on Nrf2 activation. Thus, targeting ferroptosis in diabetes might be a promising new approach for preservation of the ß-cell population. Our results obtained from in vivo study strongly justify this approach.


Assuntos
Diabetes Mellitus , Ferroptose , Células Secretoras de Insulina , Morte Celular , Humanos , Peróxido de Hidrogênio
18.
Cancers (Basel) ; 13(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801101

RESUMO

In our previous study, we showed that a cystine transporter (xCT) plays a pivotal role in ferroptosis of pancreatic ductal adenocarcinoma (PDAC) cells in vitro. However, in vivo xCTKO cells grew normally indicating that a mechanism exists to drastically suppress the ferroptotic phenotype. We hypothesized that plasma and neighboring cells within the tumor mass provide a source of cysteine to confer full ferroptosis resistance to xCTKO PDAC cells. To evaluate this hypothesis, we (co-) cultured xCTKO PDAC cells with different xCT-proficient cells or with their conditioned media. Our data unequivocally showed that the presence of a cysteine/cystine shuttle between neighboring cells is the mechanism that provides redox and nutrient balance, and thus ferroptotic resistance in xCTKO cells. Interestingly, although a glutathione shuttle between cells represents a good alternative hypothesis as a "rescue-mechanism", our data clearly demonstrated that the xCTKO phenotype is suppressed even with conditioned media from cells lacking the glutathione biosynthesis enzyme. Furthermore, we demonstrated that prevention of lipid hydroperoxide accumulation in vivo is mediated by import of cysteine into xCTKO cells via several genetically and pharmacologically identified transporters (ASCT1, ASCT2, LAT1, SNATs). Collectively, these data highlight the importance of the tumor environment in the ferroptosis sensitivity of cancer cells.

19.
Cancers (Basel) ; 12(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365833

RESUMO

A defining hallmark of tumor phenotypes is uncontrolled cell proliferation, while fermentative glycolysis has long been considered as one of the major metabolic pathways that allows energy production and provides intermediates for the anabolic growth of cancer cells. Although such a vision has been crucial for the development of clinical imaging modalities, it has become now evident that in contrast to prior beliefs, mitochondria play a key role in tumorigenesis. Recent findings demonstrated that a full genetic disruption of the Warburg effect of aggressive cancers does not suppress but instead reduces tumor growth. Tumor growth then relies exclusively on functional mitochondria. Besides having fundamental bioenergetic functions, mitochondrial metabolism indeed provides appropriate building blocks for tumor anabolism, controls redox balance, and coordinates cell death. Hence, mitochondria represent promising targets for the development of novel anti-cancer agents. Here, after revisiting the long-standing Warburg effect from a historic and dynamic perspective, we review the role of mitochondria in cancer with particular attention to the cancer cell-intrinsic/extrinsic mechanisms through which mitochondria influence all steps of tumorigenesis, and briefly discuss the therapeutic potential of targeting mitochondrial metabolism for cancer therapy.

20.
Front Oncol ; 10: 723, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457843

RESUMO

Cancer cells are characterized as highly proliferative at the expense of enhancement of metabolic rate. Consequently, cancer cells rely on antioxidant defenses to overcome the associated increased production of reactive oxygen species (ROS). The reliance of tumor metabolism on amino acids, especially amino acid transport systems, has been extensively studied over the past decade. Although cysteine is the least abundant amino acid in the cell, evidences described it as one of the most important amino acid for cell survival and growth. Regarding its multi-functionality as a nutrient, protein folding, and major component for redox balance due to its involvement in glutathione synthesis, disruption of cysteine homeostasis appears to be promising strategy for induction of cancer cell death. Ten years ago, ferroptosis, a new form of non-apoptotic cell death, has been described as a result of cysteine insufficiency leading to a collapse of intracellular glutathione level. In the present review, we summarized the metabolic networks involving the amino acid cysteine in cancer and ferroptosis and we focused on describing the recently discovered glutathione-independent pathway, a potential player in cancer ferroptosis resistance. Then, we discuss the implication of cysteine as key player in ferroptosis as a precursor for glutathione first, but also as metabolic precursor in glutathione-independent ferroptosis axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA