Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nature ; 576(7787): 477-481, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31827278

RESUMO

Oncogenic activation of RAS is associated with the acquisition of a unique set of metabolic dependencies that contribute to tumour cell fitness. Cells that express oncogenic RAS are able to internalize and degrade extracellular protein via a fluid-phase uptake mechanism termed macropinocytosis1. There is increasing recognition of the role of this RAS-dependent process in the generation of free amino acids that can be used to support tumour cell growth under nutrient-limiting conditions2. However, little is known about the molecular steps that mediate the induction of macropinocytosis by oncogenic RAS. Here we identify vacuolar ATPase (V-ATPase) as an essential regulator of RAS-induced macropinocytosis. Oncogenic RAS promotes the translocation of V-ATPase from intracellular membranes to the plasma membrane via a pathway that requires the activation of protein kinase A by a bicarbonate-dependent soluble adenylate cyclase. Accumulation of V-ATPase at the plasma membrane is necessary for the cholesterol-dependent plasma-membrane association of RAC1, a prerequisite for the stimulation of membrane ruffling and macropinocytosis. These observations establish a link between V-ATPase trafficking and nutrient supply by macropinocytosis that could be exploited to curtail the metabolic adaptation capacity of RAS-mutant tumour cells.


Assuntos
Membrana Celular/enzimologia , Proteína Oncogênica p21(ras)/metabolismo , Pinocitose , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Bicarbonatos/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Simportadores de Sódio-Bicarbonato/metabolismo
2.
Mol Cell Proteomics ; 20: 100160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34634466

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States. Glycans, such as carbohydrate antigen 19-9, are biomarkers of PDAC and are emerging as important modulators of cancer phenotypes. Herein, we used a systems-based approach integrating glycomic analysis of the well-established KC mouse, which models early events in transformation, and analysis of samples from human pancreatic cancer patients to identify glycans with potential roles in cancer formation. We observed both common and distinct patterns of glycosylation in pancreatic cancer across species. Common alterations included increased levels of α-2,3-sialic acid and α-2,6-sialic acid, bisecting GlcNAc and poly-N-acetyllactosamine. However, core fucose, which was increased in human PDAC, was not seen in the mouse, indicating that not all human glycomic changes are observed in the KC mouse model. In silico analysis of bulk and single-cell sequencing data identified ST6 beta-galactoside alpha-2,6-sialyltransferase 1, which underlies α-2,6-sialic acid, as overexpressed in human PDAC, concordant with histological data showing higher levels of this enzyme at the earliest stages. To test whether ST6 beta-galactoside alpha-2,6-sialyltransferase 1 promotes pancreatic cancer, we created a novel mouse in which a pancreas-specific genetic deletion of this enzyme overlays the KC mouse model. The analysis of our new model showed delayed cancer formation and a significant reduction in fibrosis. Our results highlight the importance of a strategic systems approach to identifying glycans whose functions can be modeled in mouse, a crucial step in the development of therapeutics targeting glycosylation in pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Polissacarídeos/metabolismo , Sialiltransferases/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/metabolismo , Glicosilação , Humanos , Masculino , Camundongos Endogâmicos C57BL , Ácido N-Acetilneuramínico/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/genética , Proteoma , Sialiltransferases/genética , Análise de Sistemas , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
3.
BMC Pulm Med ; 22(1): 155, 2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461280

RESUMO

BACKGROUND: Asthma, lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are three respiratory diseases characterized by complex mechanisms underlying and genetic predispositions, with asthma having the highest calculated heritability. Despite efforts deployed in the last decades, only a small part of its heritability has been elucidated. It was hypothesized that shared genetic factors by these three diseases could help identify new asthma loci. METHODS: GWAS-nominated LC and COPD loci were selected among studies performed in Caucasian cohorts using the GWAS Catalog. Genetic analyses were carried out for these loci in the Saguenay-Lac-Saint-Jean (SLSJ) asthma familial cohort and then replicated in two independent cohorts (the Canadian Cohort Obstructive Lung Disease [CanCOLD] and the Epidemiological Study of the Genetics and Environment of Asthma [EGEA]). RESULTS: Analyses in the SLSJ cohort identified 2851 and 4702 genetic variants to be replicated in the CanCOLD and EGEA cohorts for LC and COPD loci respectively. Replication and meta-analyses allowed the association of one new locus with asthma, 2p24.3, from COPD studies. None was associated from LC studies reported. CONCLUSIONS: The approach used in this study contributed to better understand the heritability of asthma with shared genetic backgrounds of respiratory diseases.


Assuntos
Asma , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Asma/genética , Canadá , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/genética
4.
Int J Cancer ; 144(10): 2465-2477, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30367463

RESUMO

Different studies have shown that HPV16-positive OPSCC can be subdivided based on integration status (integrated, episomal and mixed forms). Because we showed that integration neither affects the levels of viral genes, nor those of virally disrupted human genes, a genome-wide screen was performed to identify human genes which expression is influenced by viral integration and have clinical relevance. Thirty-three fresh-frozen HPV-16 positive OPSCC samples with known integration status were analyzed by mRNA expression profiling. Among the genes of interest, Aldo-keto-reductases 1C1 and 1C3 (AKR1C1, AKR1C3) were upregulated in tumors with viral integration. Additionally, 141 OPSCC, including 48 HPV-positive cases, were used to validate protein expression by immunohistochemistry. Results were correlated with clinical and histopathological data. Non-hierarchical clustering resulted in two main groups differing in mRNA expression patterns, which interestingly corresponded with viral integration status. In OPSCC with integrated viral DNA, often metabolic pathways were deregulated with frequent upregulation of AKR1C1 and AKR1C3 transcripts. Survival analysis of 141 additionally immunostained OPSCC showed unfavorable survival rates for tumors with upregulation of AKR1C1 or AKR1C3 (both p <0.0001), both in HPV-positive (p ≤0.001) and -negative (p ≤0.017) tumors. OPSCC with integrated HPV16 show upregulation of AKR1C1 and AKR1C3 expression, which strongly correlates with poor survival rates. Also in HPV-negative tumors, upregulation of these proteins correlates with unfavorable outcome. Deregulated AKR1C expression has also been observed in other tumors, making these genes promising candidates to indicate prognosis. In addition, the availability of inhibitors of these gene products may be utilized for drug treatment.


Assuntos
20-Hidroxiesteroide Desidrogenases/genética , Membro C3 da Família 1 de alfa-Ceto Redutase/genética , Carcinoma de Células Escamosas/genética , Papillomavirus Humano 16/genética , Neoplasias Orofaríngeas/genética , Regulação para Cima/genética , Integração Viral/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , DNA Viral/genética , Feminino , Genes Virais/genética , Humanos , Masculino , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade , Neoplasias Orofaríngeas/patologia , Neoplasias Orofaríngeas/virologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Prognóstico , Taxa de Sobrevida
5.
Respir Res ; 19(1): 117, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29895291

RESUMO

Human immunodeficiency virus (HIV) infection is associated with an increased risk of chronic obstructive pulmonary disease (COPD) independent of cigarette smoke exposure. Previous studies have demonstrated that decreased peripheral leukocyte telomere length is associated with HIV, suggesting an accelerated aging phenomenon. We demonstrate that this process of telomere shortening also occurs in the lungs, with significant decreases in telomere length observed in small airway epithelial cells collected during bronchoscopy. Molecular evidence of accelerated aging in the small airway epithelium of persons living with HIV may be one clue into the predisposition for chronic lung disease observed in this population.


Assuntos
Envelhecimento/genética , Infecções por HIV/genética , Doença Pulmonar Obstrutiva Crônica/genética , Mucosa Respiratória/fisiologia , Homeostase do Telômero/fisiologia , Telômero/genética , Idoso , Envelhecimento/metabolismo , Estudos de Coortes , Feminino , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Humanos , Pulmão/patologia , Pulmão/fisiologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/patologia , Fumar/genética , Fumar/metabolismo , Fumar/patologia , Telômero/metabolismo , Telômero/patologia , Carga Viral/tendências
6.
Respir Res ; 19(1): 140, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30053882

RESUMO

BACKGROUND: Persons living with human immunodeficiency virus (PLWH) face an increased burden of chronic obstructive pulmonary disease (COPD). Repeated pulmonary infections, antibiotic exposures, and immunosuppression may contribute to an altered small airway epithelium (SAE) microbiome. METHODS: SAE cells were collected from 28 PLWH and 48 HIV- controls through bronchoscopic cytologic brushings. DNA extracted from SAE cells was subjected to 16S rRNA amplification and sequencing. Comparisons of alpha and beta diversity between HIV+ and HIV- groups were performed and key operational taxonomic units (OTUs) distinguishing the two groups were identified using the Boruta feature selection after Random Forest Analysis. RESULTS: PLWH demonstrated significantly reduced Shannon diversity compared with HIV- volunteers (1.82 ± 0.10 vs. 2.20 ± 0.073, p = 0.0024). This was primarily driven by a reduction in bacterial richness (23.29 ± 2.75 for PLWH and 46.04 ± 3.716 for HIV-, p < 0.0001). Phyla distribution was significantly altered among PLWH, with an increase in relative abundance of Proteobacteria (p = 0.0003) and a decrease in Bacteroidetes (p = 0.0068) and Firmicutes (p = 0.0002). Six discriminative OTUs were found to distinguish PLWH from HIV- volunteers, aligning to Veillonellaceae, Fusobacterium, Verrucomicrobiaceae, Prevotella, Veillonella, and Campylobacter. CONCLUSIONS: Compared to HIV- controls, PLWH's SAE microbiome is marked by reduced bacterial diversity and richness with significant differences in community composition.


Assuntos
Infecções por HIV/microbiologia , Microbiota/fisiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Mucosa Respiratória/microbiologia , Mucosa Respiratória/fisiologia , Idoso , Broncoscopia/métodos , Estudos de Coortes , Feminino , Infecções por HIV/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia
7.
J Pathol ; 240(2): 161-72, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27357447

RESUMO

Genes involved in fetal lung development are thought to play crucial roles in the malignant transformation of adult lung cells. Consequently, the study of lung tumour biology in the context of lung development has the potential to reveal key developmentally relevant genes that play critical roles in lung cancer initiation/progression. Here, we describe for the first time a comprehensive characterization of miRNA expression in human fetal lung tissue, with subsequent identification of 37 miRNAs in non-small cell lung cancer (NSCLC) that recapitulate their fetal expression patterns. Nuclear factor I/B (NFIB), a transcription factor essential for lung development, was identified as a potential frequent target for these 'oncofetal' miRNAs. Concordantly, analysis of NFIB expression in multiple NSCLC independent cohorts revealed its recurrent underexpression (in ∼40-70% of tumours). Interrogation of NFIB copy number, methylation, and mutation status revealed that DNA level disruption of this gene is rare, and further supports the notion that oncofetal miRNAs are likely the primary mechanism responsible for NFIB underexpression in NSCLC. Reflecting its functional role in regulating lung differentiation, low expression of NFIB was significantly associated with biologically more aggressive subtypes and, ultimately, poorer survival in lung adenocarcinoma patients. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Adenocarcinoma/genética , Neoplasias Pulmonares/genética , MicroRNAs/metabolismo , Fatores de Transcrição NFI/genética , Invasividade Neoplásica/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Fatores de Transcrição NFI/metabolismo , Invasividade Neoplásica/patologia , Prognóstico , Taxa de Sobrevida
8.
Mol Cancer ; 15(1): 67, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27784305

RESUMO

Lung cancer is a leading cause of cancer-related deaths worldwide. Lung cancer risk factors, including smoking and exposure to environmental carcinogens, have been linked to chronic inflammation. An integral feature of inflammation is the activation, expansion and infiltration of diverse immune cell types, including CD4+ T cells. Within this T cell subset are immunosuppressive regulatory T (Treg) cells and pro-inflammatory T helper 17 (Th17) cells that act in a fine balance to regulate appropriate adaptive immune responses.In the context of lung cancer, evidence suggests that Tregs promote metastasis and metastatic tumor foci development. Additionally, Th17 cells have been shown to be an integral component of the inflammatory milieu in the tumor microenvironment, and potentially involved in promoting distinct lung tumor phenotypes. Studies have shown that the composition of Tregs and Th17 cells are altered in the tumor microenvironment, and that these two CD4+ T cell subsets play active roles in promoting lung cancer progression and metastasis.We review current knowledge on the influence of Treg and Th17 cells on lung cancer tumorigenesis, progression, metastasis and prognosis. Furthermore, we discuss the potential biological and clinical implications of the balance among Treg/Th17 cells in the context of the lung tumor microenvironment and highlight the potential prognostic function and relationship to metastasis in lung cancer.


Assuntos
Neoplasias Pulmonares/imunologia , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Animais , Progressão da Doença , Humanos , Camundongos , Metástase Neoplásica , Microambiente Tumoral
9.
BMC Pulm Med ; 16(1): 142, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27829448

RESUMO

BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is an important comorbidity in patients living with human immunodeficiency virus (HIV). Previous bacterial microbiome studies have shown increased abundance of specific bacterium, like Tropheryma whipplei, and no overall community differences. However, the host response to the lung microbiome is unknown in patients infected with HIV. METHODS: Two bronchial brush samples were obtained from 21 HIV-infected patients. One brush was used for bacterial microbiome analysis using the Illumina MiSeqTM platform, while the other was used to evaluate gene expression patterns of the host using the Affymetrix Human Gene ST 2.0 array. Weighted gene co-expression network analysis was used to determine the relationship between the bacterial microbiome and host gene expression response. RESULTS: The Shannon Diversity was inversely related to only one gene expression module (p = 0.02); whereas evenness correlated with five different modules (p ≤ 0.05). After FDR correction only the Firmicutes phylum was significantly correlated with any modules (FDR < 0.05). These modules were enriched for cilia, transcription regulation, and immune response. Specific operational taxonomic units (OTUs), such as OTU4 (Pasteurellaceae), were able to distinguish HIV patients with and without COPD and severe emphysema. CONCLUSION: These data support the hypothesis that the bacterial microbiome in HIV lungs is associated with specific host immune responses. Whether or not these responses are also seen in non-HIV infected individuals needs to be addressed in future studies.


Assuntos
Infecções por HIV/complicações , Pulmão/microbiologia , Microbiota , Doença Pulmonar Obstrutiva Crônica/microbiologia , Adulto , Idoso , Bactérias/classificação , Células Epiteliais/citologia , Feminino , Expressão Gênica , Infecções por HIV/microbiologia , Humanos , Pulmão/citologia , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/imunologia , RNA Ribossômico 16S/genética , Tomografia Computadorizada por Raios X
10.
Int J Cancer ; 137(9): 2072-82, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25907283

RESUMO

Microtubule affinity-regulating kinases (MARKs) are involved in several cellular functions but few studies have correlated MARK kinase expression with cancer, and none have explored their role in lung cancer. In this study, we identified MARK2 as frequently disrupted by DNA hypomethylation and copy gain, resulting in concordant overexpression in independent lung tumor cohorts and we demonstrate a role for MARK2 in lung tumor biology. Manipulation of MARK2 in lung cell lines revealed its involvement in cell viability and anchorage-independent growth. Analyses of both manipulated cell lines and clinical tumor specimens identified a potential role for MARK2 in cell cycle activation and DNA repair. Associations between MARK2 and the E2F, Myc/Max and NF-κB pathways were identified by luciferase assays and in-depth assessment of the NF-κB pathway suggests a negative association between MARK2 expression and NF-κB due to activation of non-canonical NF-κB signaling. Finally, we show that high MARK2 expression levels correlate with resistance to cisplatin, a standard first line chemotherapy for lung cancer. Collectively, our work supports a role for MARK2 in promoting malignant phenotypes of lung cancer and potentially modulating response to the DNA damaging chemotherapeutic, cisplatin.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/enzimologia , Proteínas Serina-Treonina Quinases/fisiologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Humanos , Neoplasias Pulmonares/tratamento farmacológico , NF-kappa B/metabolismo
11.
Br J Haematol ; 169(3): 415-22, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25644177

RESUMO

Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) and T cell/histiocyte rich large B cell lymphoma (THRLBCL) usually affect middle-aged men, show tumour cells with a B cell phenotype and a low tumour cell content. Whereas the clinical behaviour of NLPHL is indolent, THRLBCL presents with advanced stage disease and an aggressive behaviour. In the present study, array comparative genomic hybridization was performed in seven typical NLPHL, four THRLBCL-like NLPHL variants, six THRLBCL and four diffuse large B cell lymphomas (DLBCL) derived from NLPHL. The number of genomic aberrations was higher in THRLBCL compared with typical and THRLBCL-like variant of NLPHL. Gains of 2p16.1 and losses of 2p11.2 and 9p11.2 were commonly observed in typical and THRLBCL-like variants of NLPHL as well as THRLBCL. Gains of 2p16.1, affecting the REL locus were confirmed in an independent cohort. Expression of the REL protein was observed at similar frequencies in typical and THRLBCL-like variant of NLPHL as well as THRLBCL (33-38%). In conclusion, the present study reveals further similarities between NLPHL and THRLBCL on the genomic level, confirming that these entities are part of a pathobiological spectrum with common molecular features, but varying clinical presentations.


Assuntos
Doença de Hodgkin/genética , Doença de Hodgkin/patologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Aberrações Cromossômicas , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Histiócitos/metabolismo , Histiócitos/patologia , Doença de Hodgkin/metabolismo , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Linfoma Difuso de Grandes Células B/metabolismo , Proteínas Proto-Oncogênicas c-rel/genética , Proteínas Proto-Oncogênicas c-rel/metabolismo , Reprodutibilidade dos Testes , Linfócitos T/metabolismo , Linfócitos T/patologia
12.
Genome Res ; 22(2): 188-95, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22301133

RESUMO

The genomics era has yielded great advances in the understanding of cancer biology. At the same time, the immense complexity of the cancer genome has been revealed, as well as a striking heterogeneity at the whole-genome (or omics) level that exists between even histologically similar tumors. The vast accrual and public availability of multi-omics databases with associated clinical annotation including tumor histology, patient response, and outcome are a rich resource that has the potential to lead to rapid translation of high-throughput omics to improved overall survival. We focus on the unique advantages of a multidimensional approach to genomic analysis in this new high-throughput omics age and discuss the implications of the changing cancer demographic to translational omics research.


Assuntos
Genômica , Neoplasias/diagnóstico , Neoplasias/terapia , Proteômica , Pesquisa Translacional Biomédica , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Modelos Animais de Doenças , Detecção Precoce de Câncer , Estudos de Associação Genética , Humanos , Terapia de Alvo Molecular , Mutação , Neoplasias/genética , Prognóstico , Transdução de Sinais
13.
Am J Respir Cell Mol Biol ; 50(5): 912-22, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24298892

RESUMO

DNA methylation is an epigenetic modification that is highly disrupted in response to cigarette smoke and involved in a wide spectrum of malignant and nonmalignant diseases, but surprisingly not previously assessed in small airways of patients with chronic obstructive pulmonary disease (COPD). Small airways are the primary sites of airflow obstruction in COPD. We sought to determine whether DNA methylation patterns are disrupted in small airway epithelia of patients with COPD, and evaluate whether changes in gene expression are associated with these disruptions. Genome-wide methylation and gene expression analysis were performed on small airway epithelial DNA and RNA obtained from the same patient during bronchoscopy, using Illumina's Infinium HM27 and Affymetrix's Genechip Human Gene 1.0 ST arrays. To control for known effects of cigarette smoking on DNA methylation, methylation and gene expression profiles were compared between former smokers with and without COPD matched for age, pack-years, and years of smoking cessation. Our results indicate that aberrant DNA methylation is (1) a genome-wide phenomenon in small airways of patients with COPD, and (2) associated with altered expression of genes and pathways important to COPD, such as the NF-E2-related factor 2 oxidative response pathway. DNA methylation is likely an important mechanism contributing to modulation of genes important to COPD pathology. Because these methylation events may underlie disease-specific gene expression changes, their characterization is a critical first step toward the development of epigenetic markers and an opportunity for developing novel epigenetic therapeutic interventions for COPD.


Assuntos
Metilação de DNA , Doença Pulmonar Obstrutiva Crônica/genética , Idoso , Brônquios/metabolismo , DNA/genética , Epitélio/metabolismo , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , RNA/genética , Fumar/genética , Fumar/metabolismo
14.
Cancer Metastasis Rev ; 32(3-4): 341-52, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23633034

RESUMO

Genomic instability is a hallmark of cancer that leads to an increase in genetic alterations, thus enabling the acquisition of additional capabilities required for tumorigenesis and progression. Substantial heterogeneity in the amount and type of instability (nucleotide, microsatellite, or chromosomal) exists both within and between cancer types, with epithelial tumors typically displaying a greater degree of instability than hematological cancers. While high-throughput sequencing studies offer a comprehensive record of the genetic alterations within a tumor, detecting the rate of instability or cell-to-cell viability using this and most other available methods remains a challenge. Here, we discuss the different levels of genomic instability occurring in human cancers and touch on the current methods and limitations of detecting instability. We have applied one such approach to the surveying of public tumor data to provide a cursory view of genome instability across numerous tumor types.


Assuntos
Instabilidade Genômica , Neoplasias/diagnóstico , Neoplasias/genética , Animais , Transformação Celular Neoplásica/genética , Testes Genéticos/métodos , Genômica/métodos , Humanos
15.
BMC Cancer ; 14: 778, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25342220

RESUMO

BACKGROUND: Cigarette smoke is associated with the majority of lung cancers: however, 25% of lung cancer patients are non-smokers, and half of all newly diagnosed lung cancer patients are former smokers. Lung tumors exhibit distinct epidemiological, clinical, pathological, and molecular features depending on smoking status, suggesting divergent mechanisms underlie tumorigenesis in smokers and non-smokers. MicroRNAs (miRNAs) are integral contributors to tumorigenesis and mediate biological responses to smoking. Based on the hypothesis that smoking-specific miRNA differences in lung adenocarcinomas reflect distinct tumorigenic processes selected by different smoking and non-smoking environments, we investigated the contribution of miRNA disruption to lung tumor biology and patient outcome in the context of smoking status. METHODS: We applied a whole transcriptome sequencing based approach to interrogate miRNA levels in 94 patient-matched lung adenocarcinoma and non-malignant lung parenchymal tissue pairs from current, former and never smokers. RESULTS: We discovered novel and distinct smoking status-specific patterns of miRNA and miRNA-mediated gene networks, and identified miRNAs that were prognostically significant in a smoking dependent manner. CONCLUSIONS: We conclude that miRNAs disrupted in a smoking status-dependent manner affect distinct cellular pathways and differentially influence lung cancer patient prognosis in current, former and never smokers. Our findings may represent promising biologically relevant markers for lung cancer prognosis or therapeutic intervention.


Assuntos
Adenocarcinoma/etiologia , Adenocarcinoma/mortalidade , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/mortalidade , MicroRNAs/genética , Fumar , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Adulto , Idoso , Análise por Conglomerados , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Avaliação de Resultados da Assistência ao Paciente , Prognóstico , Interferência de RNA
16.
Mol Cancer ; 12(1): 124, 2013 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-24138990

RESUMO

BACKGROUND: Reactive oxygen species contribute to normal thyroid function. The NRF2 oxidative response pathway is frequently and constitutively activated in multiple tumor types, including papillary thyroid carcinoma (PTC). Genetic mechanisms underlying NRF2 pathway activation in PTC are not fully understood. Thus, we aimed to determine whether inactivating patterns of DNA-level alterations affect genes encoding for individual NRF2 inhibitor complex components (CUL3/KEAP1/RBX1) occur in PTC. FINDINGS: Combined patterns of epi/genetic alterations for KEAP1/CUL3/RBX1 E3 ubiquitin-ligase complex components were simultaneously interrogated for a panel of 310 PTC cases and 40 adjacent non-malignant tissues. Data were obtained from The Cancer Genome Atlas project. Enrichment of NRF2 pathway activation was assessed by gene-set enrichment analysis using transcriptome data. Our analyses revealed that PTC sustain a strikingly high frequency (80.6%) of disruption to multiple component genes of the NRF2 inhibitor complex. Hypermethylation is the predominant inactivating mechanism primarily affecting KEAP1 (70.6%) and CUL3 (20%), while copy number loss mostly affects RBX1 (16.8%). Concordantly, NRF2-associated gene expression signatures are positively and significantly enriched in PTC. CONCLUSIONS: The KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex is almost ubiquitously affected by multiple DNA-level mechanisms and downstream NRF2 pathway targets are activated in PTC. Given the importance of this pathway to normal thyroid function as well as to cancer; targeted inhibition of NRF2 regulators may impact strategies for therapeutic intervention involving this pathway.


Assuntos
Carcinoma/enzimologia , Fator 2 Relacionado a NF-E2/genética , Neoplasias da Glândula Tireoide/enzimologia , Ubiquitina-Proteína Ligases/fisiologia , Carcinoma/genética , Carcinoma Papilar , Proteínas de Transporte/metabolismo , Proteínas Culina/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/genética
17.
Front Immunol ; 14: 1275890, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936700

RESUMO

The growth and metastasis of solid tumours is known to be facilitated by the tumour microenvironment (TME), which is composed of a highly diverse collection of cell types that interact and communicate with one another extensively. Many of these interactions involve the immune cell population within the TME, referred to as the tumour immune microenvironment (TIME). These non-cell autonomous interactions exert substantial influence over cell behaviour and contribute to the reprogramming of immune and stromal cells into numerous pro-tumourigenic phenotypes. The study of some of these interactions, such as the PD-1/PD-L1 axis that induces CD8+ T cell exhaustion, has led to the development of breakthrough therapeutic advances. Yet many common analyses of the TME either do not retain the spatial data necessary to assess cell-cell interactions, or interrogate few (<10) markers, limiting the capacity for cell phenotyping. Recently developed digital pathology technologies, together with sophisticated bioimage analysis programs, now enable the high-resolution, highly-multiplexed analysis of diverse immune and stromal cell markers within the TME of clinical specimens. In this article, we review the tumour-promoting non-cell autonomous interactions in the TME and their impact on tumour behaviour. We additionally survey commonly used image analysis programs and highly-multiplexed spatial imaging technologies, and we discuss their relative advantages and limitations. The spatial organization of the TME varies enormously between patients, and so leveraging these technologies in future studies to further characterize how non-cell autonomous interactions impact tumour behaviour may inform the personalization of cancer treatment.​.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Diagnóstico por Imagem , Linfócitos T CD8-Positivos , Processamento de Imagem Assistida por Computador
18.
Cell Oncol (Dordr) ; 46(6): 1659-1673, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37318751

RESUMO

BACKGROUND: Recent studies have uncovered the near-ubiquitous presence of microbes in solid tumors of diverse origins. Previous literature has shown the impact of specific bacterial species on the progression of cancer. We propose that local microbial dysbiosis enables certain cancer phenotypes through provisioning of essential metabolites directly to tumor cells. METHODS: 16S rDNA sequencing of 75 patient lung samples revealed the lung tumor microbiome specifically enriched for bacteria capable of producing methionine. Wild-type (WT) and methionine auxotrophic (metA mutant) E. coli cells were used to condition cell culture media and the proliferation of lung adenocarcinoma (LUAD) cells were measured using SYTO60 staining. Further, colony forming assay, Annexin V Staining, BrdU, AlamarBlue, western blot, qPCR, LINE microarray and subcutaneous injection with methionine modulated feed were used to analyze cellular proliferation, cell-cycle, cell death, methylation potential, and xenograft formation under methionine restriction. Moreover, C14-labeled glucose was used to illustrate the interplay between tumor cells and bacteria. RESULTS/DISCUSSION: Our results show bacteria found locally within the tumor microenvironment are enriched for methionine synthetic pathways, while having reduced S-adenosylmethionine metabolizing pathways. As methionine is one of nine essential amino acids that mammals are unable to synthesize de novo, we investigated a potentially novel function for the microbiome, supplying essential nutrients, such as methionine, to cancer cells. We demonstrate that LUAD cells can utilize methionine generated by bacteria to rescue phenotypes that would otherwise be inhibited due to nutrient restriction. In addition to this, with WT and metA mutant E. coli, we saw a selective advantage for bacteria with an intact methionine synthetic pathway to survive under the conditions induced by LUAD cells. These results would suggest that there is a potential bi-directional cross-talk between the local microbiome and adjacent tumor cells. In this study, we focused on methionine as one of the critical molecules, but we also hypothesize that additional bacterial metabolites may also be utilized by LUAD. Indeed, our radiolabeling data suggest that other biomolecules are shared between cancer cells and bacteria. Thus, modulating the local microbiome may have an indirect effect on tumor development, progression, and metastasis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Humanos , Metionina/genética , Metionina/metabolismo , Escherichia coli/metabolismo , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/patologia , Racemetionina/metabolismo , Proliferação de Células/genética , S-Adenosilmetionina/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Mamíferos/metabolismo , Microambiente Tumoral
19.
Cancer Res ; 83(7): 1111-1127, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36720042

RESUMO

The microenvironment that surrounds pancreatic ductal adenocarcinoma (PDAC) is profoundly desmoplastic and immunosuppressive. Understanding triggers of immunosuppression during the process of pancreatic tumorigenesis would aid in establishing targets for effective prevention and therapy. Here, we interrogated differential molecular mechanisms dependent on cell of origin and subtype that promote immunosuppression during PDAC initiation and in established tumors. Transcriptomic analysis of cell-of-origin-dependent epithelial gene signatures revealed that Nt5e/CD73, a cell-surface enzyme required for extracellular adenosine generation, is one of the top 10% of genes overexpressed in murine tumors arising from the ductal pancreatic epithelium as opposed to those rising from acinar cells. These findings were confirmed by IHC and high-performance liquid chromatography. Analysis in human PDAC subtypes indicated that high Nt5e in murine ductal PDAC models overlaps with high NT5E in human PDAC squamous and basal subtypes, considered to have the highest immunosuppression and worst prognosis. Multiplex immunofluorescent analysis showed that activated CD8+ T cells in the PDAC tumor microenvironment express high levels of CD73, indicating an opportunity for immunotherapeutic targeting. Delivery of CD73 small-molecule inhibitors through various delivery routes reduced tumor development and growth in genetically engineered and syngeneic mouse models. In addition, the adenosine receptor Adora2b was a determinant of adenosine-mediated immunosuppression in PDAC. These findings highlight a molecular trigger of the immunosuppressive PDAC microenvironment elevated in the ductal cell of origin, linking biology with subtype classification, critical components for PDAC immunoprevention and personalized approaches for immunotherapeutic intervention. SIGNIFICANCE: Ductal-derived pancreatic tumors have elevated epithelial and CD8+GZM+ T-cell CD73 expression that confers sensitivity to small-molecule inhibition of CD73 or Adora2b to promote CD8+ T-cell-mediated tumor regression. See related commentary by DelGiorno, p. 977.


Assuntos
Vacinas Anticâncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Adenosina , Carcinoma Ductal Pancreático/patologia , Terapia de Imunossupressão , Imunoterapia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , 5'-Nucleotidase/imunologia , Neoplasias Pancreáticas
20.
Cancer Cell ; 40(7): 720-737.e5, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35660135

RESUMO

Aerobic exercise is associated with decreased cancer incidence and cancer-associated mortality. However, little is known about the effects of exercise on pancreatic ductal adenocarcinoma (PDA), a disease for which current therapeutic options are limited. Herein, we show that aerobic exercise reduces PDA tumor growth, by modulating systemic and intra-tumoral immunity. Mechanistically, exercise promotes immune mobilization and accumulation of tumor-infiltrating IL15Rα+ CD8 T cells, which are responsible for the tumor-protective effects. In clinical samples, an exercise-dependent increase of intra-tumoral CD8 T cells is also observed. Underscoring the translational potential of the interleukin (IL)-15/IL-15Rα axis, IL-15 super-agonist (NIZ985) treatment attenuates tumor growth, prolongs survival, and enhances sensitivity to chemotherapy. Finally, exercise or NIZ985 both sensitize pancreatic tumors to αPD-1, with improved anti-tumor and survival benefits. Collectively, our findings highlight the therapeutic potential of an exercise-oncology axis and identify IL-15 activation as a promising treatment strategy for this deadly disease.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptores de Interleucina-15/metabolismo , Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Humanos , Imunoterapia , Interleucina-15/metabolismo , Interleucina-15/farmacologia , Interleucina-15/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Microambiente Tumoral , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA