Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 26(2): 115, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25665841

RESUMO

The aim of this study was to propose and validate a new unified method for testing dissolution rates of bioactive glasses and their variants, and the formation of calcium phosphate layer formation on their surface, which is an indicator of bioactivity. At present, comparison in the literature is difficult as many groups use different testing protocols. An ISO standard covers the use of simulated body fluid on standard shape materials but it does not take into account that bioactive glasses can have very different specific surface areas, as for glass powders. Validation of the proposed modified test was through round robin testing and comparison to the ISO standard where appropriate. The proposed test uses fixed mass per solution volume ratio and agitated solution. The round robin study showed differences in hydroxyapatite nucleation on glasses of different composition and between glasses of the same composition but different particle size. The results were reproducible between research facilities. Researchers should use this method when testing new glasses, or their variants, to enable comparison between the literature in the future.


Assuntos
Apatitas/química , Materiais Biomiméticos/química , Materiais Biomiméticos/normas , Líquidos Corporais/química , Cerâmica/química , Vidro/química , Teste de Materiais/normas , Apatitas/normas , Cerâmica/análise , Cerâmica/normas , Vidro/análise , Vidro/normas , Internacionalidade , Teste de Materiais/métodos , Tamanho da Partícula , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Int J Pharm ; 647: 123475, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37832706

RESUMO

In the pharmaceutical industry, powder flowability is an essential manufacturability attribute to consider when selecting the suitable manufacturing route and formulation. The selection of the formulation is usually based on the physical and chemical properties of the Active Pharmaceutical Ingredient (API) under consideration. Current industrial practice heavily relies on experimental work, which often results in significant labor and API consumption that results in higher costs. In this study we describe the development of a mixing rule to predict powder blend flowability from the flow properties of the individual components for industrial formulations manufactured via Direct Compression (DC). The mixing rule assumes that the granular solids' interactions are dominated by cohesive forces but are pragmatic to calibrate from the perspective of the typical data collated in an industrial environment. The proposed model was validated using a range of different APIs and the results show that the model can effectively predict the flowability properties of any formulation across the space of DC-relevant formulation compositions. Finally, a connection between the model and APIs properties (shape and size) was investigated via a linear correlation between the API particle properties and interparticle forces.


Assuntos
Pós , Pós/química , Pressão , Tamanho da Partícula , Composição de Medicamentos/métodos , Comprimidos/química
3.
Int J Pharm ; 614: 121435, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34974150

RESUMO

In oral solid dosage production through direct compression powder lubrication must be carefully selected to facilitate the manufacturing of tablets without degrading product manufacturability and quality (e.g. dissolution). To do so, several semi-empirical models relating compression performance to process operating conditions have been developed. Among them, we consider an extension of the Kushner and Moore model (Kushner and Moore, 2010, International Journal Pharmaceutics, 399:19) that is useful for the purpose, but requires an extensive experimental campaign for parameters identification. This implies the preparation and compression of multiple powder blends, each one with a different lubrication extent. In turn, this translates into a considerable consumption of Active Pharmaceutical Ingredient (API), and into time-consuming experiments. We tackled this issue by proposing a novel model-based design of experiments (MBDoE) approach, which minimizes the number of optimal blends for model calibration, while obtaining statistically sound parameters estimates and model predictions. Both sequential and parallel MBDoE configurations were compared. Experimental results involving two placebo blends with different lubrication sensitivity showed that this methodology is able to reduce the experimental effort by 60-70% with respect to the standard industrial practice independently of the formulation considered and configuration (i.e. parallel vs. sequential) adopted.


Assuntos
Lubrificação , Composição de Medicamentos , Pós , Pressão , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA