Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Divers ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014147

RESUMO

Worldwide, cervical cancer (CCa) is a major killer of women. As the conventional drugs used to treat cervical cancer are expensive and expose severe side effects, there is a growing demand to search for novel modifications. Therefore, in the current investigation employing a bioinformatic approach, we explored triterpenoids for their anti-cancer efficacy by targeting cervical cancer epigenetic proteins, namely DNMT3A, HDAC4, and KMT2C. The study utilized molecular docking, ADMET assay, Molecular Dynamic simulation, and DFT calculation to unveil Betulin (BE) as the potential lead compound. Comparative analysis with that standard drug indicated that BE has a better glide score with the target protein KM2TC (- 9.893 kcal/mol), HDAC4 (- 9.720 kcal/mol), and DNMT3A (- 7.811 kcal/mol), which depicts that BE could be a potent inhibitor of these three epigenetic proteins and exhibits favorable pharmacokinetic, pharmacodynamics and toxicity properties. Molecular Dynamics simulation revealed noteworthy structural stability and compactness. DFT analysis revealed higher molecular activity of BE and showed the most increased kinetic stability (δE = 0.254647 eV). Further, we employed In vitro analysis through MTT assay and found that BE has IC50 of 15 µg/ml. In conclusion, BE can potentially treat CCa upon further investigations using in vivo models for better understanding.

2.
Indian J Microbiol ; 64(3): 1222-1245, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39282199

RESUMO

Cervical malignancy (CC) is the 2nd most prevalent malignancy among females, leading to cancer mortality. Primary detection of CC tumors results in an improved prognosis. CC is a malignant gynecological tumor, with few treatment options. New diagnostic and therapeutic agents are required to expand patient survival and quality of life. If CC tumors can be found at an early stage, the prognosis is much brighter. New diagnostic and therapeutic agents are needed to increase patient survival and quality of life. In this work, we performed whole-exome sequencing utilizing V5 (Illumina platform) 10 samples, 5 control and 5 CC tumour tissue, and we compared the results with transcriptome studies. KMT2C variations were shown to be among the most vicious in this analysis. From an Indian viewpoint, we found a plethora of SNVs and mutations, including those with known, unknown, and possible effects on health. Based on our findings, we know that the KMT2C gene is on chr. Seven and in exon 8, all three recognized variants are missense, synonymous, coding synonymous, non-coding variants, and GnomAD MAF (- 0.05). The variation at position (7:152265091, T > A, SNV 62478356) in KMT2C is unique, potent, and pathogenic. The missense coding transcript CIQTNF maps to chromosome 7 and displays T > C SNV. In addition, we performed single strand conformational polymorphism analysis on 64 samples and further confirmed them using Sanger sequencing to understand and verify the mutations. KMT2C shows a log FC value of - 1.16. Understanding emerging harmful mutations from an Indian viewpoint is facilitated by our bioinformatics-based, extensive correlation studies of WES analysis. Potentially harmful and new mutations were found in our preliminary analysis; among these ten top mutated genes, KMT2C and CIQTNF were altered in ten cases of CC with an Indian phenotype.

3.
Am J Physiol Endocrinol Metab ; 324(5): E409-E424, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629821

RESUMO

FGF21 is an endocrine hormone that controls key metabolic processes and induces the synthesis of glucose transporters, resulting in increased glucose absorption levels in fat cells. It is expressed in multiple metabolically active organs and tissues. FGF21 is also a powerful regulator of glucose homeostasis as a direct downregulating gene of peroxisome proliferator-activated receptor (PPAR), which plays a role in regulating the activity of glucose and lipids. Attempts were made to understand various aspects related to FGF21, including properties like receptor binding and genomic linkage map, along with the information about the genes that function in the upregulation of FGF21 and how it, directly and indirectly, downregulates the genes that are vital in various metabolic pathways. Furthermore, various gene regulatory analyses on the specific gene concerning unique micro RNAs and long non-coding RNAs that target FGF21 and alter its functioning along with single-nucleotide polymorphisms (SNPs) were observed, that are the common cause of cell dysregulation, leading to different metabolic diseases and pathogenesis of cancer. Unique protein-protein interaction and cross talk between FGF21 and PPARγ shed light on their combined role in metabolic disorder-related regulatory activities. Its potential and unique role as an effective biomarker for various cardiovascular and metabolic disorders have also been highlighted. This study attempts to highlight the pleiotropic role of FGF21 activity following its overexpression and inhibition of cascades that results in the induction of obesity from diet and simultaneously signals adipocytes to absorb glucose and decrease triglyceride and blood sugar levels in diabetic models (after administration), rendering it a promising treatment for several metabolic and cardiovascular disorders.


Assuntos
Fatores de Crescimento de Fibroblastos , Doenças Metabólicas , Humanos , Fatores de Crescimento de Fibroblastos/metabolismo , Glucose/metabolismo , Adipócitos/metabolismo , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo
4.
Curr Genomics ; 24(5): 287-306, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38235353

RESUMO

Background: Currently, prostate-specific antigen (PSA) is commonly used as a prostate cancer (PCa) biomarker. PSA is linked to some factors that frequently lead to erroneous positive results or even needless biopsies of elderly people. Objectives: In this pilot study, we undermined the potential genes and mutations from several databases and checked whether or not any putative prognostic biomarkers are central to the annotation. The aim of the study was to develop a risk prediction model that could help in clinical decision-making. Methods: An extensive literature review was conducted, and clinical parameters for related comorbidities, such as diabetes, obesity, as well as PCa, were collected. Such parameters were chosen with the understanding that variations in their threshold values could hasten the complicated process of carcinogenesis, more particularly PCa. The gathered data was converted to semi-binary data (-1, -0.5, 0, 0.5, and 1), on which machine learning (ML) methods were applied. First, we cross-checked various publicly available datasets, some published RNA-seq datasets, and our whole-exome sequencing data to find common role players in PCa, diabetes, and obesity. To narrow down their common interacting partners, interactome networks were analysed using GeneMANIA and visualised using Cytoscape, and later cBioportal was used (to compare expression level based on Z scored values) wherein various types of mutation w.r.t their expression and mRNA expression (RNA seq FPKM) plots are available. The GEPIA 2 tool was used to compare the expression of resulting similarities between the normal tissue and TCGA databases of PCa. Later, top-ranking genes were chosen to demonstrate striking clustering coefficients using the Cytoscape-cytoHubba module, and GEPIA 2 was applied again to ascertain survival plots. Results: Comparing various publicly available datasets, it was found that BLM is a frequent player in all three diseases, whereas comparing publicly available datasets, GWAS datasets, and published sequencing findings, SPFTPC and PPIMB were found to be the most common. With the assistance of GeneMANIA, TMPO and FOXP1 were found as common interacting partners, and they were also seen participating with BLM. Conclusion: A probabilistic machine learning model was achieved to identify key candidates between diabetes, obesity, and PCa. This, we believe, would herald precision scale modeling for easy prognosis.

5.
Tumour Biol ; 37(4): 5475-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26563376

RESUMO

Chronic myeloid leukemia (CML) is a monoclonal myeloproliferative disorder of hematopoietic stem cells (HSCs), characterized by reciprocal translocation, leading to the formation of BCR-ABL oncogene with constitutive tyrosine kinase (TK) activity. This oncogene is known to deregulate different downstream pathways which ultimately lead to cell proliferation, defective DNA repair, and inhibition of apoptosis. Fas (Fas cell surface death receptor) is a member of tumor necrosis factor (TNF) superfamily which interacts with its ligand, FasL, to initiate apoptosis. Promoter polymorphisms in Fas-FasL genes are known to influence the apoptotic signaling. Hence, the present study has been aimed to find out the association of the promoter polymorphisms in Fas and FasL genes with the development and progression of CML. Blood samples from 772 subjects (386 controls and 386 cases) were collected and genotyped for Fas-FasL gene polymorphisms through PCR-RFLP method. The association between SNPs and clinical outcome was analyzed using statistical softwares like SPSS version 20, SNPSTATs, and Haploview 2.1. The study revealed a significant association of Fas -670 G>A and FasL -844 T>C polymorphisms with the development of CML while Fas -670 AG was associated with accelerated phase. Combined risk analysis by taking the risk genotypes in cases and controls revealed a significant increase in CML risk with increase in number of risk genotypes (one risk genotype-OR 1.99 (1.44-2.76), p < 0.0001; two risk genotypes-OR 3.33 (1.91-5.81), p < 0.0001). Kaplan-Meier survival analysis of Fas -670 A>G and FasL -844 T>C showed reduced event-free survival in patients carrying the variant genotypes, Fas -670 GG, 32.363 ± 6.33, and FasL -844 CC, 33.489 ± 5.83, respectively. Our findings revealed a significant association of Fas -670 GG, FasL -844 TC, and CC genotypes with increased risk of CML.


Assuntos
Proteína Ligante Fas/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Regiões Promotoras Genéticas , Receptor fas/genética , Adulto , Apoptose , Intervalo Livre de Doença , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco
6.
Tumour Biol ; 36(10): 7967-76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25957891

RESUMO

B-cell lymphoma 2 (BCL2) and BCL2-associated X protein (BAX) proteins are anti-apoptotic and pro-apoptotic determinants of mitochondrial-mediated apoptosis, and their relative expression determines the cell fate. The promoter polymorphisms in these genes were shown to alter the protein function or expression and exert an impact on apoptosis regulation. Deregulation in the expression of any of these genes leads to disruption of cellular homeostasis and malignant transformation. The present study was aimed to determine the association of BCL2-938C>A and BAX-248G>A promoter polymorphisms with origin and progression of acute myeloid leukemia (AML). We also have performed combined genotype analysis to evaluate the cumulative effect of risk genotypes in the AML development. These polymorphisms were genotyped by polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) in 221 AML patients and 305 age- and sex-matched healthy controls. Our study revealed that BCL2-938CA (p = 0.018) and BAX-248GG (0.043) genotypes were significantly associated with increased risk for AML occurrence. BAX-248A allele had shown decreased risk for AML. The combined analysis had shown that BCL2-938CA+AA-BAX-248GG group had a 1.63-fold (95 % CI: 1.08-2.45, p = 0.02) increased risk for AML. None of the clinical variables had shown any significant association with both polymorphisms. With respect to complete remission (CR) rate, BAX-248GG genotype (p = 0.002) and G allele (p = 0.009) had conferred significant risk for complete remission failure. Although the log rank test was not significant, survival analysis had shown a trend where BCL2-938CA genotype, and BAX-248GG had reduced median disease-free survival (DFS) of 9 and 10 months, respectively. In conclusion, BCL2-938C>A and BAX-248G>A gene polymorphisms might contribute to the origin of AML. Moreover, influence of BAX-248GG genotype on CR and DFS rate suggests that the BAX-248G>A polymorphism can serve as marker for poor prognosis in AML.


Assuntos
Biomarcadores Tumorais/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/genética , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Pré-Escolar , DNA/análise , DNA/genética , Feminino , Seguimentos , Humanos , Índia , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Prognóstico , Taxa de Sobrevida , Adulto Jovem
7.
Tumour Biol ; 35(9): 8813-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24879622

RESUMO

Abnormal apoptosis is one of the hallmarks of cancers including acute myeloid leukemia (AML), as it plays a pivotal role in precisely maintaining self-renewal, proliferation, and differentiation properties of hematopoietic stem cells (HSCs). Caspase9 (CASP9), an initiator caspase activated by mitochondrial-mediated apoptotic pathway (intrinsic pathway), triggers cascade of effector caspases and executes apoptosis. Functional SNPs in CASP9 might influence the gene expression leading to altered apoptosis which confer the risk to AML. To test this hypothesis, we have analyzed four CASP9 gene polymorphisms [CASP9 - 1263A > G (rs4645978), CASP9 - 712C > T (rs4645981), CASP9 - 293_275del CGTGAGGTC AGTGCGGGGA (-293del) (rs4645982), and CASP9 Ex5 + 32G > A (rs1052576)] in 180 AML cases and 304 age- and sex-matched healthy controls. We performed various statistical analyses to determine the potential interactions between these SNPs and AML. The study revealed that presence of G allele at CASP9 - 1263 position elevates the risk of AML 1.53-fold and CT/TT genotype at CASP9 - 712 position by 2.60-fold under dominant model of inheritance. Two CASP9 haplotypes, G-del(+)-C-A and G-del(+)-T-A, were found to be significantly associated with increased AML risk by 2.19- (95 % confidence interval (CI), 1.09-4.39; p = 0.028) and 11.75-fold (95 % CI, 1.01-136.57; p = 0.05), respectively. Further, multidimensionality reduction (MDR) analysis had revealed single locus CASP9 - 712C > T SNP and four loci CASP9 - 1263A > G, CASP9 - 293del, CASP9 - 712C > T, and CASP9 Ex5 + 32G > A SNPs as highest predicting models for AML development. Our results revealed a significant association of two SNPs in CASP9 (-1263A > G and -712C > T) and two haplotypes of the four SNP combinations with AML susceptibility.


Assuntos
Caspase 9/genética , Predisposição Genética para Doença/genética , Leucemia Mieloide Aguda/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Adolescente , Adulto , Idoso , Alelos , Criança , Pré-Escolar , Feminino , Frequência do Gene , Genótipo , Haplótipos , Humanos , Índia , Leucemia Mieloide Aguda/classificação , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
8.
Indian J Biochem Biophys ; 51(3): 207-10, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25204082

RESUMO

The activating mutations of the Ras gene or other abnormalities in Ras signaling pathway lead to uncontrolled growth factor-independent proliferation of hematopoietic progenitors. Oncogenic mutations in NRAS gene have been observed with variable prevalence in hematopoietic malignancies. In the present study, NRAS mutations were detected using bidirectional sequencing in 264 acute leukemia cases--129 acute lymphocytic leukemia (ALL) and 135 acute myeloid leukemia (AML) and 245 age- and gender-matched controls. Missense mutation was observed only in the 12th codon of NRAS gene in 4.7% of AML and 3.16% of ALL cases. The presence of NRAS mutation did not significantly influence blast % and lactate dehydrogenase (LDH) levels in AML patients. When the data were analyzed with respect to clinical variables, the total leukocyte count was elevated for mutation positive group, compared to negative group. In AML patients with NRAS mutations, 60% failed to achieve complete remission (CR), as compared to 34.8% in mutation negative group. These results indicated that NRAS mutations might confer poor drug response. In AML, disease free survival (DFS) in NRAS mutation positive group was lesser, compared to mutation negative group (9.5 months vs. 11.68 months). In ALL patients, DFS of NRAS mutation positive group was lesser than mutation negative group (9.2 months vs. 27.5 months). The CR rate was also lower for mutation-positive patients group, compared to mutation-negative group. In conclusion, these results suggested that presence of NRAS mutation at 12th codon was associated with poor response and poorer DFS in both ALL and AML.


Assuntos
GTP Fosfo-Hidrolases/genética , Leucemia Mieloide Aguda/genética , Proteínas de Membrana/genética , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Leucemia Mieloide Aguda/epidemiologia , Leucemia Mieloide Aguda/mortalidade , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Prevalência , Prognóstico , Taxa de Sobrevida
9.
MethodsX ; 11: 102480, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38098771

RESUMO

Euglena gracilis (EG) is a unicellular freshwater alga known for its high ß-1,3-glucan (BG) content with well-known biological properties and immune response. The high molecular weight structure of BG traditionally poses a challenge in terms of its size and absorption. Therefore, the aim of this study was to develop a novel drug delivery mechanism of BG and EG to nanophytosomes (NPs) by converting the heavy molecular weight of BG and EG into lipid phosphatidylcholine (PC), which plays an important role in improving their bioavailability and entrapment in captivity. The BG and EG NPs were developed by the solvent evaporation method while varying time and temperature to optimize their drug delivery ability. The size of BG-PC and EG-PC obtained by the Dynamic Light Scattering (DLS) method was 134.62 and 158.38 nm, respectively. Chemical (Fourier Transform Infra-Red) and structural (X-Ray Diffraction) characterization of NPs improved the binding capacity and the amorphous nature of both NPs. The shape of the NPs by Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) revealed their spherical, vesicular nature. The encapsulation efficiency of BG-PC and EG-PC was 82 ± 1.62 % and 87 ± 3.22 %, respectively, which improves the bioavailability. The developed methodology has thus proven effective in synthesizing BG-PC and EG-PC, which may be useful as NP drug delivery carriers. Future research could demonstrate the safety and effectiveness of long-term storage conditions for medical and pharmaceutical applications.•Nanophytosomes are tailored in size, shape and composition to optimize the delivery of phytochemicals/phytocompounds through nanoscale size and surface modification for better physiological absorption.•Nanophytosomes increase the stability of phytochemicals/phytocompounds and protect them from degradation due to heat or chemical reactions, leading to longer shelf life and improved therapeutic efficacy.•In this method, optimal conditions were created for the formation of ß-1,3-glucan and Euglena gracilis extract nanophytosomes for successful development of drug delivery system that can effectively deliver bioactive compounds.

10.
J Biomol Struct Dyn ; : 1-13, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615411

RESUMO

Prostate cancer is the second most dangerous cancer type worldwide. While various treatment options are present i.e. agonists and antagonists, their utilization leads to adverse effects and due to this resistance developing, ultimately the outcome is remission. So, to overcome this issue, we have undertaken an in-silico investigation to identify promising and unique flavonoid candidates for combating prostate cancer. Using GOLD software, the study assessed the effectiveness of 560 natural secondary polyphenols against CDKN2. Protein Data Bank was used to retrieve the 3D crystal structure of CDKN2 (PDB Id: 4EK3) and we retrieved the structure of selected secondary polyphenols from the PubChem database. The compound Diosmetin shows the highest GOLD score with the selected Protein i.e. CDKN2 which is 58.72. To better understand the 2-dimensional and 3-dimensional interactions, the interacting amino acid residues were visualised using Discovery Studio 3.5 and Maestro 13.5. Using Schrodinger-Glide, the Diosmetin and CDKN2 were re-docked, and decoy ligands were docked to CDKN2, which was used to further ascertain the study. The ligands with the highest Gold score were forecasted for pharmacokinetics characteristics, and the results were tabulated and analysed. Utilising the Gromacs software and Desmond packages, 100 ns of Diosmetin molecular dynamics simulations were run to evaluate the structural persistence and variations of protein-ligand complexes. Additionally, our investigation revealed that Diosmetin had a better binding affinity with CDKN2 measuring 58.72, and it also showed remarkable stability across a 100-ns simulation. Thus, following in-vitro and in-vivo clinical studies, diosmetin might lead to the Prostate regimen.Communicated by Ramaswamy H. Sarma.

11.
Diseases ; 11(2)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37218885

RESUMO

Prostate cancer (PCa) is one of the most prevalent cancers among men in India. Although studies on PCa have dealt with genetics, genomics, and the environmental influence in the causality of PCa, not many studies employing the Next Generation Sequencing (NGS) approaches of PCa have been carried out. In our previous study, we identified some causal genes and mutations specific to Indian PCa using Whole Exome Sequencing (WES). In the recent past, with the help of different cancer consortiums such as The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC), along with differentially expressed genes (DEGs), many cancer-associated novel non-coding RNAs have been identified as biomarkers. In this work, we attempt to identify differentially expressed genes (DEGs) including long non-coding RNAs (lncRNAs) associated with signature pathways from an Indian PCa cohort using the RNA-sequencing (RNA-seq) approach. From a cohort of 60, we screened six patients who underwent prostatectomy; we performed whole transcriptome shotgun sequencing (WTSS)/RNA-sequencing to decipher the DEGs. We further normalized the read counts using fragments per kilobase of transcript per million mapped reads (FPKM) and analyzed the DEGs using a cohort of downstream regulatory tools, viz., GeneMANIA, Stringdb, Cytoscape-Cytohubba, and cbioportal, to map the inherent signatures associated with PCa. By comparing the RNA-seq data obtained from the pairs of normal and PCa tissue samples using our benchmarked in-house cuffdiff pipeline, we observed some important genes specific to PCa, such as STEAP2, APP, PMEPA1, PABPC1, NFE2L2, and HN1L, and some other important genes known to be involved in different cancer pathways, such as COL6A1, DOK5, STX6, BCAS1, BACE1, BACE2, LMOD1, SNX9, CTNND1, etc. We also identified a few novel lncRNAs such as LINC01440, SOX2OT, ENSG00000232855, ENSG00000287903, and ENST00000647843.1 that need to be characterized further. In comparison with publicly available datasets, we have identified characteristic DEGs and novel lncRNAs implicated in signature PCa pathways in an Indian PCa cohort which perhaps have not been reported. This has set a precedent for us to validate candidates further experimentally, and we firmly believe this will pave a way toward the discovery of biomarkers and the development of novel therapies.

12.
Heliyon ; 8(5): e09403, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35663739

RESUMO

Investigators were continuously creating novel nanotechnologies to address unmet requirements throughout the administration of therapeutic medicines & imaging agents for cancer treatment & diagnostics, appropriately. LNPs(Lipid nanoparticles) are legitimate particulates (approx. 100 nm in size) gathered from various lipid as well as other biochemical compounds which overall functionality to resolve biological barriers (biobarriers), allowing LNPs to selectively collect somewhere outside of disease-target cells again for responsive therapeutics. Most pharmaceutically important compounds were insoluble throughout water solutions, were chemical & physiologically unstable, or have toxicities. Among the most potential drug carrier for bioactive organic compounds is LBNPs (Lipid based nanoparticles) technologies. Its present use in chemotherapy have transformed treatment for cancer by increasing the antitumor effect of a number of chemotherapeutics. Because they may be created using naturally occurring sources, LBNPs have great temporal and thermal stability, maximum load potential, simplicity of preparations, cheap manufacturing costs, & big manufacturing output. Furthermore, combining chemotherapeutic drugs with LNPs reduces active therapeutic dosage and toxicities, lowers treatment resistance, & raises drug concentration in tumour cells while reducing concentrations in normal tissue. LBNPs were widely studied in cancer treatment, both in vitro and in vivo, with encouraging outcomes in certain clinical trials. This study provides an overview of the many types of LBNPs which have been created in latest years and their applications and contributions in different types of cancers.

13.
World J Clin Cases ; 10(18): 5957-5964, 2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35949812

RESUMO

An emerging area of interest in understanding disease phenotypes is systems genomics. Complex diseases such as diabetes have played an important role towards understanding the susceptible genes and mutations. A wide number of methods have been employed and strategies such as polygenic risk score and allele frequencies have been useful, but understanding the candidate genes harboring those mutations is an unmet goal. In this perspective, using systems genomic approaches, we highlight the application of phenome-interactome networks in diabetes and provide deep insights. LINC01128, which we previously described as candidate for diabetes, is shown as an example to discuss the approach.

14.
Biomolecules ; 12(6)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35740959

RESUMO

Extremophilic microorganisms often produce novel bioactive compounds to survive under harsh environmental conditions. Exopolysaccharides (EPSs), a constitutive part of bacterial biofilm, are functional biopolymers that act as a protecting sheath to the extremophilic bacteria and are of high industrial value. In this study, we elucidate a new EPS produced by thermophilic Bacillus haynesii CamB6 from a slightly acidic (pH 5.82) Campanario hot spring (56.4 °C) located in the Central Andean Mountains of Chile. Physicochemical properties of the EPS were characterized by different techniques: Scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS), Atomic Force Microscopy (AFM), High-Performance Liquid Chromatography (HPLC), Gel permeation chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), 1D and 2D Nuclear Magnetic Resonance (NMR), and Thermogravimetric analysis (TGA). The EPS demonstrated amorphous surface roughness composed of evenly distributed macromolecular lumps. GPC and HPLC analysis showed that the EPS is a low molecular weight heteropolymer composed of mannose (66%), glucose (20%), and galactose (14%). FTIR analysis demonstrated the polysaccharide nature (-OH groups, Acetyl groups, and pyranosic ring structure) and the presence of different glycosidic linkages among sugar residues, which was further confirmed by NMR spectroscopic analyses. Moreover, D-mannose α-(1→2) and α-(1→4) linkages prevail in the CamB6 EPS structure. TGA revealed the high thermal stability (240 °C) of the polysaccharide. The functional properties of the EPS were evaluated for food industry applications, specifically as an antioxidant and for its emulsification, water-holding (WHC), oil-holding (OHC), and flocculation capacities. The results suggest that the study EPS can be a useful additive for the food-processing industry.


Assuntos
Bacillus , Polissacarídeos Bacterianos , Peso Molecular , Polissacarídeos Bacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Curr Top Med Chem ; 19(13): 1173-1187, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244427

RESUMO

BACKGROUND: Alzheimers Disease (AD) is a neurodegenerative disease which is characterized by the deposition of amyloid plaques in the brain- a concept supported by most of the researchers worldwide. The main component of the plaques being amyloid-beta (Aß42) results from the sequential cleavage of Amyloid precursor protein (APP) by beta and gamma secretase. This present study intends to inhibit the formation of amyloid plaques by blocking the action of gamma secretase protein with Inhibitors (GSI). METHODS: A number of Gamma Secretase Inhibitors (GSI) were targeted to the protein by molecular docking. The inhibitor having the best affinity was used as a subject for further virtual screening methods to obtain similar compounds. The generated compounds were docked again at the same docking site on the protein to find a compound with higher affinity to inhibit the protein. The highlights of virtually screened compound consisted of Pharmacophore Mapping of the docking site. These steps were followed by comparative assessments for both the compounds, obtained from the two aforesaid docking studies, which included interaction energy descriptors, ADMET profiling and PreADMET evaluations. RESULTS: 111 GSI classified as azepines, sulfonamides and peptide isosteres were used in the study. By molecular docking an amorpholino-amide, compound (22), was identified to be the high affinity compound GSI along with its better interaction profiles.The virtually screened pubchem compound AKOS001083915 (CID:24462213) shows the best affinity with gamma secretase. Collective Pharmacophore mapping (H bonds, electrostatic profile, binding pattern and solvent accesibility) shows a stable interaction. The resulting ADMETand Descriptor values were nearly equivalent. CONCLUSION: These compounds identified herein hold a potential as Gamma Secretase inhibitors.According to PreADMET values the compound AKOS001083915 is effective and specific to the target protein. Its BOILED-egg plot analysis infers the compound permeable to blood brain barrier.Comparative study for both the compounds resulted in having nearly equivalent properties. These compounds have the capacity to inhibit the protein which is indirectly responsible for the formation of amyloid plaques and can be further put to in vitro pharmacokinetic and dynamic studies.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amidas/farmacologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Morfolinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Doença de Alzheimer/metabolismo , Amidas/síntese química , Amidas/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Morfolinas/síntese química , Morfolinas/química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
16.
Asian Pac J Cancer Prev ; 20(4): 1229-1241, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31030499

RESUMO

Breast cancer is the most frequent malignancy among women. It is a heterogeneous disease with different subtypes defined by its hormone receptor. A hormone receptor is mainly concerned with the progression of the PI3K/AKT/ mTOR pathway which is often dysregulated in breast cancer. This is a major signaling pathway that controls the activities such as cell growth, cell division, and cell proliferation. The present study aims to suppress mTOR protein by its various inhibitors and to select one with the highest binding affinity to the receptor protein. Out of 40 inhibitors of mTOR against breast cancer, SF1126 was identified to have the best docking score of -8.705, using Schrodinger Suite which was further subjected for high throughput screening to obtain best similar compound using Lipinski's filters. The compound obtained after virtual screening, ID: ZINC85569445 is seen to have the highest affinity with the target protein mTOR. The same result based on the binding free energy analysis using MM-GBSA showed that the compound ZINC85569445 to have the the highest binding free energy. The next study of interaction between the ligand and receptor protein with the pharmacophore mapping showed the best conjugates, and the ZINC85569445 can be further studied for future benefits of treatment of breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Simulação por Computador , Bases de Dados de Produtos Farmacêuticos , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Ligantes , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/isolamento & purificação , Relação Estrutura-Atividade
17.
Asian Pac J Cancer Prev ; 20(9): 2681-2692, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31554364

RESUMO

Vascular endothelial growth factor (VEGF) expression could be found in all glioblastomas. VEGF takes part in numerous changes including the endothelial cell proliferation, the vasculature of solid tumor: its survival invasion, and migration, chemotaxis of bone marrow-derived progenitor cells, vasodilation and vascular permeability. VEGF inhibition can be a smart therapeutic strategy because it is extremely specific and less toxic than cytotoxic therapy. To establish better inhibition of VEGF than the current inhibitors, present study approach is by molecular docking, virtual screening to illustrate the inhibitor with superior affinity against VEGF to have a cautious pharma profile. To retrieve the best established and high-affinity high affinity molecule, Molegro Virtual Docker software was executed. The high-affinity scoring compounds were subjected to further similarity search to retrieve the drugs with similar properties from pubchem database. The completion of virtual screening reveals that PubChem compound SCHEMBL1250485 (PubChem CID: 66965667) has the highest affinity. The study of the drug-likeness was verified using OSIRIS Property Explorer software which supported the virtual screened result. Further ADMET study and drug comparative study strongly prove the superiority of the new established inhibitor with lesser rerank score and toxicity. Overall, the new inhibitor has higher potential to stop the expression of VEGF in glioblastoma and positively can be further analysed through In vitro studies.


Assuntos
Glioblastoma/tratamento farmacológico , Ensaios de Triagem em Larga Escala/métodos , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular
18.
Asian Pac J Cancer Prev ; 20(8): 2287-2297, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450897

RESUMO

Acute myeloid leukemia (AML) is symbolized by an increase in the number of myeloid cells in the bone marrow and an arrest in their maturation, frequently resulting in hematopoietic insufficiency (granulocytopenia, thrombocytopenia, or anemia) with or without leukocytosis either by a predominance of immature forms or a loss of normal hematopoiesis. IDH2 gene encodes for isocitrate dehydrogenase enzyme which is involved in the TCA cycle domino effect and converts isocitrate to alpha-ketoglutarate. In the U.S, the annual incidence of AML progressively increases with age to a peak of 12.6 per 100,000 adults of 65 years or older. Mutations in isocitrate dehydrogenase 2 (arginine 132) have been demonstrated to be recurrent gene alterations in acute myeloid leukemia (AML) by forming 2-Hydroxy alpha ketoglutarate which, instead of participating in TCA cycle, accumulates to form AML. The current study approaches by molecular docking and virtual screening to elucidate inhibitor with superior affinity against IDH2 and achieve a pharmacological profile. To obtain the best established drug Molegro Virtual Docker algorithm was executed. The compound AG-221 (Pub CID 71299339) having the high affinity score was subjected to similarity search to retrieve the drugs with similar properties. The virtual screened compound SCHEMBL16391748 (PubChem CID-117816179) shows high affinity for the protein. Comparative study and ADMET study for both the above compounds resulted in equivalent chemical properties. Virtual screened compound SCHEMBL16391748 (PubChem CID-117816179) shows the lowest re-rank score. These drugs are identified as high potential IDH2 inhibitors and can halt AML when validated through further In vitro screening.


Assuntos
Ensaios de Triagem em Larga Escala , Isocitrato Desidrogenase/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Aminopiridinas/química , Aminopiridinas/metabolismo , Humanos , Isocitrato Desidrogenase/química , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Triazinas/química , Triazinas/metabolismo
19.
Asian Pac J Cancer Prev ; 17(2): 815-21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925685

RESUMO

BACKGROUND: Development of chronic myeloid leukemia (CML) involves formation of double strand breaks (DSBs) which are initially sensed by the ataxia telangiectasia mutated (ATM) signal kinase to induce a DNA damage response (DDR). Mutations or single nucleotide polymorphisms in ATM gene are known to influence the signaling capacity resulting in susceptibility to certain genetic diseases such as cancers. MATERIALS AND METHODS: In the present study, we have analyzed -5144A>T (rs228589) and C4138T (rs3092856) polymorphisms of theATM gene through polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) in 925 subjects (476 CML cases and 449 controls). RESULTS: The A allele of -5144A>T polymorphism and T allele of C4138T polymorphism which were known to be influencing ATM signaling capacity are significantly associated with enhanced risk for CML independently and also in combination (evident from the haplotype and diplotype analyses). Significant elevation in the frequencies of both the risk alleles among high risk groups under European Treatment and Outcome Study (EUTOS) score suggests the possible role of these polymorphisms in predicting the prognosis of CML patients. CONCLUSIONS: This study provides the first evidence of association of functional ATM gene polymorphisms with the increased risk of CML development as well as progression.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Biomarcadores Tumorais/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Polimorfismo de Nucleotídeo Único/genética , Estudos de Casos e Controles , Seguimentos , Predisposição Genética para Doença , Haplótipos , Humanos , Índia/epidemiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/epidemiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Estadiamento de Neoplasias , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Prognóstico , Taxa de Sobrevida
20.
Asian Pac J Cancer Prev ; 16(7): 2707-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25854351

RESUMO

BACKGROUND: The human homologue of the mouse double minute 2 (MDM2) gene is a negative regulator of Tp53. MDM2-309T>G a functional promoter polymorphism was found to be associated with overexpression thereby attenuation of Tp53 stress response and increased cancer susceptibility. We have planned to evaluate the possible role of MDM2-309T>G polymorphism with risk and response to chemotherapy in AML. MATERIALS AND METHODS: A total of 223 de novo AML cases and 304 age and sex matched healthy controls were genotyped for the MDM2-309T>G polymorphism through the tetra-primer amplification refractory mutation system (ARMS)-PCR method. In order to assess the functional relationship of -309T>G SNP with MDM2 expression level, we quantified MDM2 mRNA in 30 primary AML blood samples through quantitative RT-PCR. Both the (-309T>G) genotypes and the MDM2 expression were correlated with disease free survival (DFS) rates among patients who have achieved complete remission (CR) after first induction chemotherapy. RESULTS: MDM2-309T>G polymorphism was significantly associated with AML development (p<0.0001). The presence of either GG genotype or G allele at MDM2-309 confered 1.79 (95% CI: 1.12-2.86; p<0.001) and 1.46 fold (95%CI: 1.14-1.86; p=0.003) increased AML risk. Survival analysis revealed that CR+ve cases with GG genotype had significantly increased DFS rates (16months, p=0.05) compared to CR+ve TT (11 months) and TG (9 months) genotype groups. Further, MDM2 expression was also found to be significantly elevated in GG genotype patients (p=0.0039) and among CR+ve cases (p=0.0036). CONCLUSIONS: The MDM2-309T>G polymorphism might be involved in AML development and also serve as a good prognostic indicator.


Assuntos
Leucemia Mieloide Aguda/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/metabolismo , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Transformação Celular Neoplásica/genética , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Predisposição Genética para Doença , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA