Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1858(4): 640-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26706098

RESUMO

Equinatoxin II (EqtII), a eukaryotic pore-forming toxin, lyses cell membranes through a mechanism involving the insertion of its N-terminal α-helix into the membrane. EqtII pore formation is dependent on sphingomyelin (SM), although cholesterol (Chol) and membrane microdomains have also been suggested to enhance its activity. We have investigated the mechanism of EqtII binding and insertion by using neutron reflection to determine the structures of EqtII-membrane assemblies in situ. EqtII has several different modes of binding to membranes depending on the lipid composition. In pure dimyristoyl-phosphatidylcholine (DMPC) membranes, EqtII interacts weakly and reversibly with the lipid head groups in an orientation approximately parallel to the membrane surface. The presence of sphingomyelin (SM) gives rise to a more upright orientation of EqtII, but Chol is required for insertion into the core of the membrane. Cooling the EqtII-lipid assembly below the lipid phase transition temperature leads to deep water penetration and a significant reduction in the extension of the protein outside the membrane, indicating that phase-separation plays a role in EqtII pore-formation. An inactive double-cysteine mutant of EqtII in which the α-helix is covalently tethered to the rest of the protein, interacts only reversibly with all the membranes. Releasing the α-helix in situ by reduction of the disulphide bridge, however, causes the mutant protein to penetrate in DMPC-SM-Chol membranes in a manner identical to that of the wild-type protein. Our results help clarify the early steps in pore formation by EqtII and highlight the valuable information on protein-membrane interactions available from neutron reflection measurements.


Assuntos
Colesterol/química , Lipídeos/química , Perforina/química , Esfingomielinas/química , Animais , Colesterol/metabolismo , Venenos de Cnidários/química , Venenos de Cnidários/toxicidade , Dimiristoilfosfatidilcolina , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Nêutrons , Perforina/metabolismo , Transição de Fase , Porosidade , Estrutura Secundária de Proteína , Anêmonas-do-Mar/química , Esfingomielinas/metabolismo
2.
Nano Lett ; 14(8): 4286-92, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-24971634

RESUMO

Sensing and manipulating living cells using vertical nanowire devices requires a complete understanding of cell behavior on these substrates. Changes in cell function and phenotype are often triggered by events taking place at the plasma membrane, the properties of which are influenced by local curvature. The nanowire topography can therefore be expected to greatly affect the cell membrane, emphasizing the importance of studying membranes on vertical nanowire arrays. Here, we used supported phospholipid bilayers as a model for biomembranes. We demonstrate the formation of fluid supported bilayers on vertical nanowire forests using self-assembly from vesicles in solution. The bilayers were found to follow the contours of the nanowires to form continuous and locally highly curved model membranes. Distinct from standard flat supported lipid bilayers, the high aspect ratio of the nanowires results in a large bilayer surface available for the immobilization and study of biomolecules. We used these bilayers to bind a membrane-anchored protein as well as tethered vesicles on the nanowire substrate. The nanowire-bilayer platform shown here can be expanded from fundamental studies of lipid membranes on controlled curvature substrates to the development of innovative membrane-based nanosensors.

3.
J Biol Chem ; 287(52): 43884-98, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23129773

RESUMO

Cyclotides are a family of plant-derived circular proteins with potential therapeutic applications arising from their remarkable stability, broad sequence diversity, and range of bioactivities. Their membrane-binding activity is believed to be a critical component of their mechanism of action. Using isothermal titration calorimetry, we studied the binding of the prototypical cyclotides kalata B1 and kalata B2 (and various mutants) to dodecylphosphocholine micelles and phosphoethanolamine-containing lipid bilayers. Although binding is predominantly an entropy-driven process, suggesting that hydrophobic forces contribute significantly to cyclotide-lipid complex formation, specific binding to the phosphoethanolamine-lipid headgroup is also required, which is evident from the enthalpic changes in the free energy of binding. In addition, using a combination of dissipative quartz crystal microbalance measurements and neutron reflectometry, we elucidated the process by which cyclotides interact with bilayer membranes. Initially, a small number of cyclotides bind to the membrane surface and then insert first into the outer membrane leaflet followed by penetration through the membrane and pore formation. At higher concentrations of cyclotides, destabilization of membranes occurs. Our results provide significant mechanistic insight into how cyclotides exert their bioactivities.


Assuntos
Ciclotídeos/química , Etanolaminas/química , Bicamadas Lipídicas/química , Oldenlandia/química , Proteínas de Plantas/química , Ciclotídeos/metabolismo , Etanolaminas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Oldenlandia/metabolismo , Proteínas de Plantas/metabolismo , Ligação Proteica
4.
Langmuir ; 27(12): 7698-707, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21612246

RESUMO

The structure and formation of supported membranes at silica surfaces by vesicle fusion was investigated by neutron reflectivity and quartz crystal microbalance (QCM-D) measurements. The structure of equimolar phospholipid mixtures of DLPC-DPPC, DMPC-DPPC, and DOPC-DPPC depends intricately on the vesicle deposition conditions. The supported bilayer membranes exhibit varying degrees of compositional asymmetry between the monolayer leaflets, which can be modified by the deposition temperature as well as the salt concentration of the vesicle solution. The total lipid composition of the supported bilayers differs from the composition of the vesicles in solution, and the monolayer proximal to the silica surface is always enriched in DPPC compared to the distal monolayer. The results, which show unambiguougsly that some exchange and rearrangement of lipids occur during vesicle deposition, can be rationalized by considering the effects of salt screening and temperature on the rates of lipid exchange, rearrangement, and vesicle adsorption, but there is also an intricate dependence on the lipid-lipid interactions. Thus, although both symmetric and asymmetric supported bilayers can be prepared from vesicles, the optimal conditions are sensitive to the lipid composition of the system.


Assuntos
Membranas Artificiais , Fosfolipídeos/química , Cinética , Nêutrons
5.
Biochemistry ; 48(25): 5874-81, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19419199

RESUMO

The pH-dependent activity of phospholipase A(2) (PLA(2)) from Naja mossambica mossambica venom and the membrane-water partitioning of the lipid hydrolysis products were investigated in solid-supported palmitoyl-oleyl-phosphatidylcholine-d(31) (POPC-d(31)) membranes using neutron reflection. At pH 5, PLA(2) interacts only weakly with the substrate membrane and leads to no observable membrane breakdown, which is consistent with protonation of the catalytic histidine (His48, pK(a) approximately 6.2). The rate of the lyso-lipid partitioning into the solution phase is the same at pH 9 as at pH 7.4, and the relative membrane-water partitioning of the products is essentially the same; that is, the fatty acid accumulates in the membrane, and only the lyso-lipid is solubilized. However, Me-beta-cyclodextrin (Me-beta-CD) activates PLA(2) irrespective of pH by facilitating the solubilization of the lyso-lipid product, but not the fatty acid, of which only 22% is encapsulated at pH 9. Since no product solubilization is observed at pH 5 in the absence of Me-beta-CD, this suggests that the hydrolytic mechanism of PLA(2) is not fully disabled at pH 5 but is inhibited by a mechanism, which is counteracted by Me-beta-CD-mediated release of the lyso-lipid. Me-beta-CD does not interact with the substrate membrane, which indicates that at low pH the product extraction occurs directly from the enzyme active site outside the immediate membrane-water interface, whereas at pH 7-9, direct solubilization of the lyso-lipid from the membrane can also contribute to activation of PLA(2).


Assuntos
Venenos Elapídicos/enzimologia , Inibidores de Fosfolipase A2 , Fosfolipases A2/metabolismo , beta-Ciclodextrinas/metabolismo , Animais , Catálise , Ativação Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Difração de Nêutrons/métodos , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfolipases A2/química , Solubilidade , Especificidade por Substrato , beta-Ciclodextrinas/química
6.
Biochim Biophys Acta ; 1768(5): 1036-49, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17355873

RESUMO

We have monitored the composition of supported phospholipid bilayers during phospholipase A(2) hydrolysis using specular neutron reflection and ellipsometry. Porcine pancreatic PLA(2) shows a long lag phase of several hours during which the enzyme binds to the bilayer surface, but only 5+/-3% of the lipids react before the onset of rapid hydrolysis. The amount of PLA(2), which resides in a 21+/-1 A thick layer at the water-bilayer interface, as well as its depth of penetration into the membrane, increase during the lag phase, the length of which is also proportional to the enzyme concentration. Hydrolysis of a single-chain deuterium labelled d(31)-POPC reveals for the first time that there is a significant asymmetry in the distribution of the reaction products between the membrane and the aqueous environment. The lyso-lipid leaves the membrane while the number of PLA(2) molecules bound to the interface increases with increasing fatty acid content. These results constitute the first direct measurement of the membrane structure and composition, including the location and amount of the enzyme during hydrolysis. These are discussed in terms of a model of fatty-acid mediated activation of PLA(2).


Assuntos
Fosfolipases A/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Animais , Catálise , Venenos Elapídicos/enzimologia , Hidrólise , Cinética , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Difração de Nêutrons , Pâncreas/enzimologia , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfolipases A2 , Ligação Proteica , Suínos
7.
Chempluschem ; 81(3): 315-321, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31968790

RESUMO

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), an unsaturated acyl chain containing lipid, is often the predominant lipid in eukaryotic cell membranes in which it is crucial for the fluidity of membranes under physiological conditions. Commercially available, partially deuterated [D31 ]1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine ([D31 ]POPC) does not provide sufficient isotopic contrast for detailed structural studies of multicomponent membranes through neutron techniques. Herein, a relatively straightforward and generic chemical deuteration method is discussed for the asymmetric synthesis of perdeuterated [D31 ]1-palmitoyl-[D33 ]2-oleoyl-sn-[D5 ]glycero-[D13 ]3-phosphocholine ([D82 ]POPC) that also allows selective deuteration of any of its constituent groups. Neutron reflectivity of a [D82 ]POPC-supported bilayer was used to experimentally determine the neutron scattering length density profile of the lipid. The acyl chains of [D82 ]POPC are closely contrast-matched to heavy water, whereas the very high scattering length density of the deuterated glycerophosphocholine head groups provides good contrast to membrane-binding agents in both deuterated and non-deuterated solvent environments.

8.
Langmuir ; 23(14): 7644-51, 2007 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-17539662

RESUMO

We have investigated the adsorption of phospholipid mixtures using neutron reflection. Small sonicated unilamellar vesicles (SUV) composed of DOPC and d(62)-DPPC were incubated at 50 degrees C in contact with a silica surface using a method commonly employed to form supported model membranes. The composition of the mixed supported bilayer was found to be substantially different from that of the bulk vesicles in a direction indicating a higher affinity of DPPC for the silica surface. Formation of an asymmetric bilayer arrangement was also discovered in all the cases studied. DPPC tended to dominate the composition of the leaflet next to silica, while the outer leaflet was generally closer to the bulk composition. The supported bilayers also exhibited increasing interfacial roughness in the outer membrane leaflet in the region of the DOPC-DPPC gel-liquid immiscibility region. To our knowledge, this is the first time that both the structure and the absolute composition of a mixed-lipid supported bilayer have been resolved, and the results raise a number of questions regarding the adsorption of vesicles and the properties of supported bilayers, which are discussed in terms of the bulk phase diagram of DOPC and DPPC.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Lipossomas Unilamelares/química , Adsorção , Micelas , Transição de Fase , Dióxido de Silício/química , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA