Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 60(3): 1284-1288, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33314915

RESUMO

A doubly N-confused hexaphyrin dinuclear cobalt complex (Co2DNCH) is revealed as an efficient water oxidation catalyst, outperforming the mononuclear cobalt porphyrin with the same aryl group as those in Co2DNCH. By photoirradiation of a water/acetone-d6 (9:1) mixture containing Co2DNCH, [RuII(bpy)3]2+, and S2O82- as the water oxidation catalyst, photosensitizer, and sacrificial electron acceptor, respectively, with visible light, O2 was obtained as the maximum with turnover number = 1200, turnover frequency = 3.9 s-1, and quantum yield = 0.30.

2.
Inorg Chem ; 60(13): 9402-9415, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33988979

RESUMO

The four-electron oxygen reduction reaction (4e--ORR) is the mainstay in chemical energy conversion. Elucidation of factors influencing the catalyst's reaction rate and selectivity is important in the development of more active catalysts of 4e--ORR. In this study, we investigated chemical and electrochemical 4e--ORR catalyzed by Co2(µ-O2) complexes bridged by xanthene (1) and anthracene (3) and by a Co2(OH)2 complex bridged by anthraquinone (2). In the chemical ORR using Fe(CpMe)2 as a reductant in acidic PhCN, we found that 1 showed the highest initial turnover frequency (TOFinit = 6.8 × 102 s-1) and selectivity for 4e--ORR (96%) in three complexes. The detailed kinetic analyses have revealed that the rate-determining steps (RDSs) in the catalytic cycles of 1-3 have the O2 addition to [CoII2(OH2)2]4+ as an intermediate in common. In the only case that complex 1 was used as a catalyst, kcat depended on proton concentration because the reaction rate of the O2 addition to [CoII2(OH2)2]4+ was so fast as compared to that of the concerted PCET process of 1. Through X-ray, Raman, and electrochemical analyses and stoichiometric reactions, we found the face-to-face structure of 1 characterized by a slightly flexible xanthene was advantageous in capturing O2 and stabilizing the Co2(µ-O2) structure, thus increasing both the reaction rate and selectivity for 4e--ORR.

3.
Inorg Chem ; 55(3): 1154-64, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26810593

RESUMO

A bis-hydroxo-bridged dinuclear Co(III)-pyridylmethylamine complex (1) was synthesized and the crystal structure was determined by X-ray crystallography. Complex 1 acts as a homogeneous catalyst for visible-light-driven water oxidation by persulfate (S2O8(2-)) as an oxidant with [Ru(II)(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer affording a high quantum yield (44%) with a large turnover number (TON = 742) for O2 formation without forming catalytically active Co-oxide (CoO(x)) nanoparticles. In the water-oxidation process, complex 1 undergoes proton-coupled electron-transfer (PCET) oxidation as a rate-determining step to form a putative dinuclear bis-µ-oxyl Co(III) complex (2), which has been suggested by DFT calculations. Catalytic water oxidation by 1 using [Ru(III)(bpy)3](3+) as an oxidant in a H2(16)O and H2(18)O mixture was examined to reveal an intramolecular O-O bond formation in the two-electron-oxidized bis-µ-oxyl intermediate, prior to the O2 evolution.

4.
Chemistry ; 18(8): 2374-81, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22249993

RESUMO

A bis(ruthenium-bipyridine) complex bridged by 1,8-bis(2,2':6',2''-terpyrid-4'-yl)anthracene (btpyan), [Ru(2)(µ-Cl)(bpy)(2)(btpyan)](BF(4))(3) ([1](BF(4))(3); bpy = 2,2'-bipyridine), was prepared. The cyclic voltammogram of [1](BF(4))(3) in water at pH 1.0 displayed two reversible [Ru(II),Ru(II)](3+)/[Ru(II),Ru(III)](4+) and [Ru(II),Ru(III)](4+)/[Ru(III),Ru(III)](5+) redox couples at E(1/2)(1) = +0.61 and E(1/2)(2) = +0.80 V (vs. Ag/AgCl), respectively, and an irreversible anodic peak at around E = +1.2 V followed by a strong anodic currents as a result of the oxidation of water. The controlled potential electrolysis of [1](3+) ions at E = +1.60 V in water at pH 2.6 (buffered with H(3)PO(4)/NaH(2)PO(4)) catalytically evolved dioxygen. Immediately after the electrolysis of the [1](3+) ion in H(2)(16)O at E = +1.40 V, the resultant solution displayed two resonance Raman bands at nu = 442 and 824 cm(-1). These bands shifted to nu = 426 and 780 cm(-1), respectively, when the same electrolysis was conducted in H(2)(18)O. The chemical oxidation of the [1](3+) ion by using a Ce(IV) species in H(2)(16)O and H(2)(18)O also exhibited the same resonance Raman spectra. The observed isotope frequency shifts (Δnu = 16 and 44 cm(-1)) fully fit the calculated ones based on the Ru-O and O-O stretching modes, respectively. The first successful identification of the metal-O-O-metal stretching band in the oxidation of water indicates that the oxygen-oxygen bond at the stage prior to the evolution of O(2) is formed through the intramolecular coupling of two Ru-oxo groups derived from the [1](3+) ion.


Assuntos
Compostos Organometálicos/química , Rutênio/química , Água/química , Eletroquímica , Ligantes , Estrutura Molecular , Oxirredução , Oxigênio/química
5.
Chem Commun (Camb) ; 58(55): 7674-7677, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35726648

RESUMO

We demonstrated high catalytic activity (TON = 670, TOFmax = 2.7 s-1) of a water-soluble cobalt phthalocyanine complex (CoPcTS, PcTS = phthalocyaninetetrasulfonate) for visible light-driven photochemical water oxidation and investigated its reaction mechanism by electrochemical and spectroscopic measurements.


Assuntos
Compostos Organometálicos , Água , Catálise , Cobalto/química , Indóis , Compostos Organometálicos/química , Água/química
6.
Inorg Chem ; 48(24): 11510-2, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-19928751

RESUMO

A polypyridylruthenium complex with an NAD(+)/NADH model ligand, [Ru(bpy)(2)(pbn)](2+) [bpy = 2,2'-bipyridine; pbn = 2-(2-pyridyl)benzo[b]-1,5-naphthyridine] in a D(2)O/CH(3)CN/triethylamine solution, undergoes stereospecific hydrogenation to give Delta-(S)- and Lambda-(R)-[Ru(bpy)(2)(pbnDD)](2+) [pbnDD = 5,10-dideutero-2-(2-pyridyl)benzo[b]-1,5-naphthyridine] upon visible-light irradiation. This result clearly indicates the pathway via the pi-stacked dimer of the deuterated one-electron-reduced species. The reduction of [Ru(bpy)(2)(pbn)](2+) with Na(2)S(2)O(4) in D(2)O did not afford any stereospecific products. Furthermore, the more sterically crowded Ru complex, [Ru(dmb)(2)(pbn)](2+) (dmb = 6,6'-dimethyl-2,2'-bipyridine), did not produce the corresponding pbnDD species upon irradiation.


Assuntos
NAD/química , Compostos Organometálicos/química , Rutênio/química , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Hidrogenação , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Fotoquímica , Estereoisomerismo
7.
Inorg Chem ; 48(10): 4372-83, 2009 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-19425612

RESUMO

The redox states of Ru(OH(2))(Q)(tpy)(2+) (Q = 3,5-di-tert-butyl-1,2-benzoquinone, tpy = 2,2':6',2''-terpyridine) are investigated through experimental and theoretical UV-vis spectra and Pourbaix diagrams. The electrochemical properties are reported for the species resulting from deprotonation and redox processes in aqueous solution. The formal oxidation states of the redox couples in the various intermediate complexes are systematically assigned using electronic structure theory. The controversy over the electronic assignment of ferromagnetic vs. antiferromagnetic coupling is investigated through comparison of ab initio methods and the broken-symmetry density functional theory (DFT) approach. The various pK(a) values and reduction potentials, including the consideration of proton-coupled electron-transfer (PCET) processes, are calculated, and the theoretical version of the Pourbaix diagram is constructed in order to elucidate and assign several previously ambiguous regions in the experimental diagram.


Assuntos
Compostos Organometálicos/química , Rutênio/química , Transporte de Elétrons , Magnetismo , Modelos Moleculares , Oxirredução , Prótons , Soluções , Análise Espectral , Água
8.
Cancer Lett ; 182(1): 61-8, 2002 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-12175524

RESUMO

The antitumor efficacy of the combination of nedaplatin (NDP) with gemcitabine (GEM) was evaluated against Ma44/GEM, a GEM-refractory subline of Ma44 human lung cancer, which was established by serial in vitro passage of Ma44 cells in the presence of GEM.Ma44/GEM showed less sensitivity to GEM and cytosine arabinoside with resistance factors of 7.7 and 8.3, respectively, but not to Taxol, Irinotecan, Mitomycin C and NDP. Flow cytometry analysis demonstrated that membrane transporter molecules such as multidrug-resistant, multidrug-resistant related protein or lung resistant protein were not induced in Ma44/GEM cells. In vivo experiments confirmed the less sensitivity of Ma44/GEM to GEM. The resistant factor of Ma44/GEM to GEM in vivo was estimated to be 6.7 in terms of ED(50).MA44/GEM-implanted athymic mice were treated with GEM i.v. once followed by i.v. injection of NDP at an interval of approximately 30 min. The mice were treated again with GEM after 3 or 4 days. The combined dosing of NDP with GEM resulted in synergistically enhanced inhibition of tumor growth against Ma44/GEM. The antitumor efficacy of the combination of NDP and GEM was superior to the best effect of either monotherapy. These results demonstrate the effectiveness of the combination of NDP with GEM against the GEM-refractory human lung cancer model.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Desoxicitidina/análogos & derivados , Desoxicitidina/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Compostos Organoplatínicos/administração & dosagem , Partículas de Ribonucleoproteínas em Forma de Abóbada , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/análise , Transportadores de Cassetes de Ligação de ATP/análise , Animais , Citarabina/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Transplante Heterólogo , Células Tumorais Cultivadas , Gencitabina
9.
Chem Commun (Camb) ; 49(39): 4394-6, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23190945

RESUMO

Dinuclear cobalt-1,10-phenanthroline (1) and 2,2'-bipyridine (2) complexes bridged by 1,8-bis(2,2':6',2''-terpyrid-4'-yl)anthracene (btpyan) were prepared. Both of the complexes selectively catalysed the electrochemical four-electron reduction of dioxygen to H2O without the generation of H2O2 as a two-electron reduction product.


Assuntos
2,2'-Dipiridil/química , Antracenos/química , Cobalto/química , Complexos de Coordenação/química , Oxigênio/química , Catálise , Complexos de Coordenação/síntese química , Técnicas Eletroquímicas , Transporte de Elétrons , Elétrons , Peróxido de Hidrogênio/química , Fenantrolinas/química
13.
Dalton Trans ; 40(10): 2225-33, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21183977

RESUMO

The bridging ligand, 1,8-bis(2,2':6',2''-terpyrid-4'-yl)anthracene (btpyan) was synthesized by the Miyaura-Suzuki cross coupling reaction of anthracenyl-1,8-diboronic acid and 4'-triflyl-2,2':6'-2''-terpyridine in the presence of Pd(PPh(3))(4) (5 mol%) with 68% in yield. Three ruthenium-dioxolene dimers, [Ru(2)(OH)(2)(dioxolene)(2)(btpyan)](0) (dioxolene = 3,6-di-tert-butyl-1,2-benzosemiquinone ([1](0)), 3,5-dichloro-1,2-benzosemiquinone ([2](0)) and 4-nitro-1,2-benzosemiquinone ([3](0))) were prepared by the reaction of [Ru(2)Cl(6)(btpyan)](0) with the corresponding catechol. The electronic structure of [1](0) is approximated by [Ru(II)(2)(OH)(2)(sq)(2)(btpyan)](0) (sq = semiquinonato). On the other hand, the electronic states of [2](0) and [3](0) are close to [Ru(III)(2)(OH)(2) (cat)(2)(btpyan)](0) (cat = catecholato), indicating that a dioxolene having electron-withdrawing groups stabilizes [Ru(III)(2)(OH)(2)(cat)(2)(btpyan)](0) rather than [Ru(II)(2)(OH)(2)(sq)(2)(btpyan)](0) as resonance isomers. No sign was found of deprotonation of the hydroxo groups of [1](0), whereas [2](0) and [3](0) showed an acid-base equilibrium in treatments with t-BuOLi followed by HClO(4). Furthermore, controlled potential electrolysis of [1](0) deposited on an ITO (indium-tin oxide) electrode catalyzed the four-electron oxidation of H(2)O to evolve O(2) at potentials more positive than +1.6 V (vs. SCE) at pH 4.0. On the other hand, the electrolysis of [2](0) and [3](0) deposited on ITO electrodes did not show catalytic activity for water oxidation under similar conditions. Such a difference in the reactivity among [1](0), [2](0) and [3](0) is ascribed to the shift of the resonance equilibrium between [Ru(II)(2)(OH)(2)(sq)(2)(btpyan)](0) and [Ru(III)(2)(OH)(2)(cat)(2)(btpyan)](0).

14.
Dalton Trans ; 39(48): 11526-34, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-20830398

RESUMO

The ruthenium complexes [Ru(bpy)(pbn)(2)](PF(6))(2) ([2](2+); bpy = 2,2'-bipyridine, pbn = 2-(2-pyridyl)benzo[b]-1,5-naphthyridine) and [Ru(pbn)(3)](PF(6))(2) ([3](2+)) were synthesized. Photoirradiation (λ > 420 nm) of [2](2+) and [3](2+) in CH(3)CN/triethanolamine (TEOA) brought about proton coupled four- and six-electron reduction of the complexes to produce [Ru(bpy)(pbnH(2))(2)](PF(6))(2) ([2·H(4)](2+); pbnH(2) = 5,10-dihydro-2-(2-pyridyl)benzo[b]-1,5-naphthyridine) and [Ru(pbnH(2))(3)](PF(6))(2) ([3·H(6)](2+)), respectively. The photoexcited [Ru(III)(bpy)(pbn˙(-))(pbnH(2))](2+) intermediate is quenched by intermolecular electron transfer from TEOA to Ru(III), while intramolecular transfer from pbnH(2) to Ru(III) is negligible. As a result, novel photochemical four- and six-electron reduction of [2](2+) and [3](2+) is achieved through repetition of the two-electron reduction of the Ru-pbn group. The high efficiency photochemical two-, four- and six-electron reductions of [Ru(bpy)(2)(pbn)](2+) ([1](2+)), [2](2+) and [3](2+), respectively, by taking advantage of proton coupled two electron reduction of NAD(+) analogous type ligands such as pbn opens a general pathway for multi-electron reduction of metal complexes via illumination with visible light.

15.
Inorg Chem ; 47(6): 1787-802, 2008 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-18330970

RESUMO

Tanaka and co-workers reported a novel dinuclear Ru complex, [Ru2(OH)2(3,6-Bu2Q)2(btpyan)](SbF6)2 (3,6-Bu2Q = 3,6-di tert-butyl-1,2-benzoquinone, btpyan = 1,8-bis(2,2':6',2''-terpyrid-4'-yl)anthracene), that contains redox active quinone ligands and has an excellent electrocatalytic activity for water oxidation when immobilized on an indium-tin-oxide electrode (Inorg. Chem., 2001, 40, 329-337). The novel features of the dinuclear and related mononuclear Ru species with quinone ligands, and comparison of their properties to those of the Ru analogues with the bpy ligand (bpy = 2,2'-bipyridine) replacing quinone, are summarized here together with new theoretical and experimental results that show striking features for both the dinuclear and mononuclear species. The identity and oxidation state of key mononuclear species, including the previously reported oxyl radical, have been reassigned. Our gas-phase theoretical calculations indicate that the Tanaka Ru-dinuclear catalyst seems to maintain predominantly Ru(II) centers while the quinone ligands and water moiety are involved in redox reactions throughout the entire catalytic cycle for water oxidation. Our theoretical study identifies [Ru2(O2(-))(Q(-1.5))2(btpyan)](0) as a key intermediate and the most reduced catalyst species that is formed by removal of all four protons before four-electron oxidation takes place. While our study toward understanding the complicated electronic and geometric structures of possible intermediates in the catalytic cycle is still in progress, the current status and new directions for kinetic and mechanistic investigations, and key issues and challenges in water oxidation with the Tanaka catalyst (and its analogues with Cl(-) or NO(2-)substituted quinones and a species with a xanthene bridge instead an antheracene) are discussed.

16.
Inorg Chem ; 45(22): 8887-94, 2006 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17054347

RESUMO

A series of ruthenium complexes [Ru(OAc)(dioxolene)(terpy)] having various substituents on the dioxolene ligand (dioxolene = 3,5-t-Bu2C6H2O2 (1), 4-t-BuC6H3O2 (2), 4-ClC6H3O2 (3), 3,5-Cl2C6H2O2 (4), Cl4C6O2 (5); terpy = 2,2':6'2' '-terpyridine) were prepared. EPR spectra of these complexes in glassy frozen solutions (CH2Cl2:MeOH = 95:5, v/v) at 20 K showed anisotropic signals with g tensor components 2.242 > g1 > 2.104, 2.097 > g2 > 2.042, and 1.951 > g3 > 1.846. An anisotropic value, Deltag = g1 - g3, and an isotropic g value, g = [(g1(2) + g2(2) + g3(2))/3]1/2, increase in the order 1 < 2 < 3 < 4 < 5. The resonance between the Ru(II)(sq) (sq = semiquinone) and Ru(III)(cat) (cat = catecholato) frameworks shifts to the latter with an increase of the number of electron-withdrawing substituents on the dioxolene ligand. DFT calculations of 1, 2, 3, and 5 also support the increase of the Ru spin density (Ru(III) character) with an increase of the number of Cl atoms on the dioxolene ligand. The singly occupied molecular orbitals (SOMOs) of 1 and 5 are very similar to each other and stretch out the Ru-dioxolene frameworks, whereas the lowest unoccupied molecular orbital (LUMO) of 5 is localized on Ru and two oxygen atoms of dioxolene in comparison with that of 1. Electron-withdrawing groups decrease the energy levels of both the SOMO and LUMO. In other words, an increase in the number of Cl atoms in the dioxolene ligand results in an increase of the positive charge on Ru. Successive shifts in the electronic structure between the Ru(II)(sq) and Ru(III)(cat) frameworks caused by the variation of the substituents are compatible with the experimental data.

17.
Dalton Trans ; (4): 645-52, 2004 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-15252529

RESUMO

Syntheses and pH dependent electrochemical properties of aqua-ruthenium(II) complexes, [Ru(trpy)(PDA-N,N')(OH2)](ClO4)2 ([1](ClO4)2) and [Ru(trpy)(PD-N,N')(OH2)](ClO4)2 ([2](ClO4)2) (trpy = 2,2':6',2''-terpyridine, PDA = 6-acetonyl-6-hydroxy-1,10-phenanthroline-5-one, PD = 1,10-phenanthroline-5,6-dione) are presented. Treatment of [Ru(trpy)(PD-N,N')Cl](PF6) with AgClO4 in a mixed solvent of acetone and H2O selectively produced the acetonyl-PD complex [1](ClO4)2, and the similar treatment in a mixed solvent of 2-methoxyethanol and H2O gave the PD complex [2](ClO4)2. The molecular structures of both complexes were determined by X-ray structural analysis. The proton dissociation constants of various oxidations state of [1]2+ and [2]2+ were evaluated by simulation of E(1/2) values of those redox potentials depending on pH. The simulation revealed that the acetonyl-PD complex [1]2+ underwent successive Ru(II)/Ru(III) and Ru(III)/Ru(IV) redox couples though the two redox reactions were not separated in the cyclic voltammograms. The redox behavior of [2]2+ in H2O is reasonably explained by not only the similar successive metal-centered redox reactions but also simultaneous two-electron quinone/catechol redox couple of the PD ligand including the contribution of hydration on a carbonyl carbon.


Assuntos
Equilíbrio Ácido-Base , Compostos Organometálicos , Fenantrolinas/química , Rutênio/química , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Oxirredução , Água/química
18.
Inorg Chem ; 43(22): 7210-7, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15500360

RESUMO

4,5-Bis(terpyridyl)-2,7-di-tert-butyl-9,9-dimethylxanthene (btpyxa) was prepared to serve as a new bridging ligand via Suzuki coupling of terpyridin-4'-yl triflate and 2,7-di-tert-butyl-9,9-dimethylxanthene-4,5-diboronic acid. The reaction of btpyxa with either 1 equiv or an excess of PtCl(2)(cod) (cod = 1,5-cyclooctadiene) followed by anion exchange afforded mono- and dinuclear platinum complexes [(PtCl)(btpyxa)](PF(6)) ([1](PF(6))) and [(PtCl)(2)(btpyxa)](PF(6))(2) ([2](PF(6))(2)), respectively. The X-ray crystallography of [1](PF(6)).CHCl(3) revealed that the two terpyridine units in the ligand are nearly parallel to each other. The heterodinuclear complex [(PtCl)[Ru((t)Bu(2)SQ)(dmso)](btpyxa)](PF(6))(2) ([4](PF(6))(2)) (dmso = dimethyl sulfoxide; (t)Bu(2)SQ = 3,5-di-tert-butyl-1,2-benzosemiquinone) and the monoruthenium complex [Ru((t)Bu(2)SQ)(dmso)(trpy)](PF(6)) ([5](PF(6))) (trpy = 2,2':6',2' '-terpyridine) were also synthesized. The CV of [2](2+) suggests possible electronic interaction between the two Pt(trpy) groups, whereas such an electronic interaction was not suggested by the CV of [4](2+) between Pt(trpy) and Ru((t)Bu(2)SQ) frameworks.

19.
J Am Chem Soc ; 125(22): 6729-39, 2003 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-12769583

RESUMO

The ruthenium oxyl radical complex, [Ru(II)(trpy)(Bu(2)SQ)O(.-)] (trpy = 2,2':6',2"-terpyridine, Bu(2)SQ = 3,5-di-tert-butyl-1,2-benzosemiquinone) was prepared for the first time by the double deprotonation of the aqua ligand of [Ru(III)(trpy)(Bu(2)SQ)(OH(2))](ClO(4))(2). [Ru(III)(trpy)(Bu(2)SQ)(OH(2))](ClO(4))(2) is reversibly converted to [Ru(III)(trpy)(Bu(2)SQ)(OH-)](+) upon dissociation of the aqua proton (pK(a) 5.5). Deprotonation of the hydroxo proton gave rise to intramolecular electron transfer from the resultant O(2-) to Ru-dioxolene. The resultant [Ru(II)(trpy)(Bu(2)SQ)O(.-)] showed antiferromagnetic behavior with a Ru(II)-semiquinone moiety and oxyl radical, the latter of which was characterized by a spin trapping technique. The most characteristic structural feature of [Ru(II)(trpy)(Bu(2)SQ)O(.-)] is a long Ru-O bond length (2.042(6) A) as the first terminal metal-O bond with a single bond length. To elucidate the substituent effect of a quinone ligand, [Ru(III)(trpy)(4ClSQ)(OH(2))](ClO(4))(2) (4ClSQ = 4-chloro-1,2-benzosemiquinone) was prepared and we compared the deprotonation behavior of the aqua ligand with that of [Ru(III)(trpy)(Bu(2)SQ)(OH(2))](ClO(4))(2). Deprotonation of the aqua ligand of [Ru(III)(trpy)(4ClSQ)(OH(2))](ClO(4))(2) induced intramolecular electron transfer from OH- to the [Ru(III)(4ClSQ)] moiety affording [Ru(II)(trpy)(4ClSQ)(OH.)]+, which then probably changed to [Ru(II)(trpy)(4ClSQ)O(.-)]. The antiferromagnetic interactions (J values) between Ru(II)-semiquinone and the oxyl radical for [Ru(II)(trpy)(Bu(2)SQ)O(.-)] and for [Ru(II)(trpy)(4ClSQ)O(.-)] were 2J = -0.67 cm(-1) and -1.97 cm(-1), respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA