Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 151: 107667, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39067418

RESUMO

A series of novel sulfonamide and acetamide derivatives of pyrimidine were synthesized and their antimicrobial activities were assessed. Based on the Microbroth dilution method, the minimum inhibitory concentration (MIC) of the synthesized compounds demonstrated moderate to good levels of antifungal and antibacterial activity. Structure-activity relationship analysis suggested that the presence of electron-withdrawing groups, such as halogens, nitrile, and nitro groups, on the pyrimidine ring contributed to the enhanced antimicrobial potency, while electron-donating substituents led to a decrease in activity. Computational studies, including density functional theory (DFT), frontier molecular orbitals (FMO), and molecular electrostatic potential (MEP) analysis, provided insights into the electronic properties and charge distribution of the compounds. Drug-likeness evaluation using ADME/Tox analysis indicated that the synthesized compounds possess favorable physicochemical properties and could be potential drug candidates. Molecular docking against the Mycobacterium TB protein tyrosine phosphatase B (MtbPtpB) revealed that the synthesized compounds exhibited strong binding affinities (-46 kcal/mol to - 61 kcal/mol) and formed stable protein-ligand complexes through hydrogen bonding and π-π stacking interactions with key residues in the active site. The observed interactions from the docking simulations were consistent with the predicted interaction sites identified in the FMO and MEP analyses. These findings suggest that the synthesized pyrimidine derivatives could serve as promising antimicrobial agents and warrant further investigation for drug development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA