Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
MethodsX ; 12: 102683, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623305

RESUMO

The banking sector's shift from traditional physical locations to digital channels has offered customers unprecedented convenience and increased the risk of fraud for customers and institutions alike. In this study, we discuss the pressing need for robust fraud detection & prevention systems in the context of evolving technological environments. We introduce a graph-based machine learning model that is specifically designed to detect fraudulent activity in various types of banking operations, such as credit card transactions, debit card transactions, and online banking transactions. This model uses advanced methods for anomalies, behaviors, and patterns to analyze past transactions and user behavior almost immediately. We provide an in-depth methodology for evaluating fraud detection systems based on parameters such as Accuracy Recall rate and False positive rate ROC curves. The findings can be used by financial institutions to develop and enhance fraud detection strategies as they demonstrate the effectiveness and reliability of the proposed approach. This study emphasizes the critical role that innovative technologies play in safeguarding the financial sector from the ever-changing strategies of fraudsters while also enhancing banking security.•This paper aims to implement the detection of fraudulent transactions using a state-of-the-art Graph Database approach.•The relational graph of features in the dataset used is modelled using Neo4J as a graph database.•Applying JSON features from the exported graph to various Machine Learning models, giving effective outcomes.

2.
Plants (Basel) ; 11(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35009029

RESUMO

Precision crop safety relies on automated systems for detecting and classifying plants. This work proposes the detection and classification of nine species of plants of the PlantVillage dataset using the proposed developed compact convolutional neural networks and AlexNet with transfer learning. The models are trained using plant leaf data with different data augmentations. The data augmentation shows a significant improvement in classification accuracy. The proposed models are also used for the classification of 32 classes of the Flavia dataset. The proposed developed N1 model has a classification accuracy of 99.45%, N2 model has a classification accuracy of 99.65%, N3 model has a classification accuracy of 99.55%, and AlexNet has a classification accuracy of 99.73% for the PlantVillage dataset. In comparison to AlexNet, the proposed models are compact and need less training time. The proposed N1 model takes 34.58%, the proposed N2 model takes 18.25%, and the N3 model takes 20.23% less training time than AlexNet. The N1 model and N3 models are size 14.8 MB making it 92.67% compact, and the N2 model is 29.7 MB which makes it 85.29% compact as compared to AlexNet. The proposed models are giving good accuracy in classifying plant leaf, as well as diseases in tomato plant leaves.

3.
Brain Connect ; 7(6): 347-356, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28595456

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that predominantly affects the motor system. Diffusion magnetic resonance imaging (MRI) has demonstrated deficits in anisotropy as well as increased diffusivity in the sub-cortical structures, primarily in the substantia nigra in PD. However, the clinical spectrum of PD is not limited to motor symptoms; rather, it encompasses several nonmotor symptoms such as depression, psychosis, olfactory dysfunction, and cognitive impairment. These nonmotor symptoms underscore PD as a complex neurological disorder arising from dysfunction of several network components. Therefore, to decipher the underlying neuropathology, it is crucial to employ novel network-based methods that can elucidate associations between specific network changes. This study aimed at assessing the large-scale structural network changes in PD. Structural connectomes were computed by using probabilistic fiber tracking on diffusion MRI between 86 regions of interest. Graph theoretic analysis on the connectome was carried out at several levels of granularity: global, local (nodal), lobar, and edge wise. Our findings demonstrate lower network clustering capability, overall lower neural connectivity, and significantly reduced nodal influence of the hippocampus in PD. In addition, extensive patterns of reduced connectivity were observed within and between the temporal, parietal, and occipital areas. In summary, our findings corroborate widespread structural disconnectivity that can be potentially linked to the nonmotor symptoms in PD.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Doença de Parkinson/diagnóstico por imagem , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA