Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
mSphere ; 9(6): e0079323, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38780289

RESUMO

Clinical metaproteomics has the potential to offer insights into the host-microbiome interactions underlying diseases. However, the field faces challenges in characterizing microbial proteins found in clinical samples, usually present at low abundance relative to the host proteins. As a solution, we have developed an integrated workflow coupling mass spectrometry-based analysis with customized bioinformatic identification, quantification, and prioritization of microbial proteins, enabling targeted assay development to investigate host-microbe dynamics in disease. The bioinformatics tools are implemented in the Galaxy ecosystem, offering the development and dissemination of complex bioinformatic workflows. The modular workflow integrates MetaNovo (to generate a reduced protein database), SearchGUI/PeptideShaker and MaxQuant [to generate peptide-spectral matches (PSMs) and quantification], PepQuery2 (to verify the quality of PSMs), Unipept (for taxonomic and functional annotation), and MSstatsTMT (for statistical analysis). We have utilized this workflow in diverse clinical samples, from the characterization of nasopharyngeal swab samples to bronchoalveolar lavage fluid. Here, we demonstrate its effectiveness via analysis of residual fluid from cervical swabs. The complete workflow, including training data and documentation, is available via the Galaxy Training Network, empowering non-expert researchers to utilize these powerful tools in their clinical studies. IMPORTANCE: Clinical metaproteomics has immense potential to offer functional insights into the microbiome and its contributions to human disease. However, there are numerous challenges in the metaproteomic analysis of clinical samples, including handling of very large protein sequence databases for sensitive and accurate peptide and protein identification from mass spectrometry data, as well as taxonomic and functional annotation of quantified peptides and proteins to enable interpretation of results. To address these challenges, we have developed a novel clinical metaproteomics workflow that provides customized bioinformatic identification, verification, quantification, and taxonomic and functional annotation. This bioinformatic workflow is implemented in the Galaxy ecosystem and has been used to characterize diverse clinical sample types, such as nasopharyngeal swabs and bronchoalveolar lavage fluid. Here, we demonstrate its effectiveness and availability for use by the research community via analysis of residual fluid from cervical swabs.


Assuntos
Biologia Computacional , Proteômica , Fluxo de Trabalho , Proteômica/métodos , Humanos , Biologia Computacional/métodos , Interações entre Hospedeiro e Microrganismos , Espectrometria de Massas , Microbiota/genética , Líquido da Lavagem Broncoalveolar/microbiologia , Líquido da Lavagem Broncoalveolar/química , Proteínas de Bactérias/genética
2.
mSystems ; 9(7): e0092923, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38934598

RESUMO

Airway microbiota are known to contribute to lung diseases, such as cystic fibrosis (CF), but their contributions to pathogenesis are still unclear. To improve our understanding of host-microbe interactions, we have developed an integrated analytical and bioinformatic mass spectrometry (MS)-based metaproteomics workflow to analyze clinical bronchoalveolar lavage (BAL) samples from people with airway disease. Proteins from BAL cellular pellets were processed and pooled together in groups categorized by disease status (CF vs. non-CF) and bacterial diversity, based on previously performed small subunit rRNA sequencing data. Proteins from each pooled sample group were digested and subjected to liquid chromatography tandem mass spectrometry (MS/MS). MS/MS spectra were matched to human and bacterial peptide sequences leveraging a bioinformatic workflow using a metagenomics-guided protein sequence database and rigorous evaluation. Label-free quantification revealed differentially abundant human peptides from proteins with known roles in CF, like neutrophil elastase and collagenase, and proteins with lesser-known roles in CF, including apolipoproteins. Differentially abundant bacterial peptides were identified from known CF pathogens (e.g., Pseudomonas), as well as other taxa with potentially novel roles in CF. We used this host-microbe peptide panel for targeted parallel-reaction monitoring validation, demonstrating for the first time an MS-based assay effective for quantifying host-microbe protein dynamics within BAL cells from individual CF patients. Our integrated bioinformatic and analytical workflow combining discovery, verification, and validation should prove useful for diverse studies to characterize microbial contributors in airway diseases. Furthermore, we describe a promising preliminary panel of differentially abundant microbe and host peptide sequences for further study as potential markers of host-microbe relationships in CF disease pathogenesis.IMPORTANCEIdentifying microbial pathogenic contributors and dysregulated human responses in airway disease, such as CF, is critical to understanding disease progression and developing more effective treatments. To this end, characterizing the proteins expressed from bacterial microbes and human host cells during disease progression can provide valuable new insights. We describe here a new method to confidently detect and monitor abundance changes of both microbe and host proteins from challenging BAL samples commonly collected from CF patients. Our method uses both state-of-the art mass spectrometry-based instrumentation to detect proteins present in these samples and customized bioinformatic software tools to analyze the data and characterize detected proteins and their association with CF. We demonstrate the use of this method to characterize microbe and host proteins from individual BAL samples, paving the way for a new approach to understand molecular contributors to CF and other diseases of the airway.


Assuntos
Líquido da Lavagem Broncoalveolar , Fibrose Cística , Proteômica , Espectrometria de Massas em Tandem , Fluxo de Trabalho , Humanos , Fibrose Cística/microbiologia , Proteômica/métodos , Líquido da Lavagem Broncoalveolar/microbiologia , Líquido da Lavagem Broncoalveolar/química , Interações entre Hospedeiro e Microrganismos/genética , Microbiota/genética , Lavagem Broncoalveolar , Biologia Computacional/métodos , Masculino
3.
bioRxiv ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38045370

RESUMO

Clinical metaproteomics has the potential to offer insights into the host-microbiome interactions underlying diseases. However, the field faces challenges in characterizing microbial proteins found in clinical samples, which are usually present at low abundance relative to the host proteins. As a solution, we have developed an integrated workflow coupling mass spectrometry-based analysis with customized bioinformatic identification, quantification and prioritization of microbial and host proteins, enabling targeted assay development to investigate host-microbe dynamics in disease. The bioinformatics tools are implemented in the Galaxy ecosystem, offering the development and dissemination of complex bioinformatic workflows. The modular workflow integrates MetaNovo (to generate a reduced protein database), SearchGUI/PeptideShaker and MaxQuant (to generate peptide-spectral matches (PSMs) and quantification), PepQuery2 (to verify the quality of PSMs), and Unipept and MSstatsTMT (for taxonomy and functional annotation). We have utilized this workflow in diverse clinical samples, from the characterization of nasopharyngeal swab samples to bronchoalveolar lavage fluid. Here, we demonstrate its effectiveness via analysis of residual fluid from cervical swabs. The complete workflow, including training data and documentation, is available via the Galaxy Training Network, empowering non-expert researchers to utilize these powerful tools in their clinical studies.

4.
Viruses ; 14(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36298760

RESUMO

The Coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulted in a major health crisis worldwide with its continuously emerging new strains, resulting in new viral variants that drive "waves" of infection. PCR or antigen detection assays have been routinely used to detect clinical infections; however, the emergence of these newer strains has presented challenges in detection. One of the alternatives has been to detect and characterize variant-specific peptide sequences from viral proteins using mass spectrometry (MS)-based methods. MS methods can potentially help in both diagnostics and vaccine development by understanding the dynamic changes in the viral proteome associated with specific strains and infection waves. In this study, we developed an accessible, flexible, and shareable bioinformatics workflow that was implemented in the Galaxy Platform to detect variant-specific peptide sequences from MS data derived from the clinical samples. We demonstrated the utility of the workflow by characterizing published clinical data from across the world during various pandemic waves. Our analysis identified six SARS-CoV-2 variant-specific peptides suitable for confident detection by MS in commonly collected clinical samples.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Proteoma , Peptídeos , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA