Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 153(6): 1281-95, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23706625

RESUMO

Understanding the topological configurations of chromatin may reveal valuable insights into how the genome and epigenome act in concert to control cell fate during development. Here, we generate high-resolution architecture maps across seven genomic loci in embryonic stem cells and neural progenitor cells. We observe a hierarchy of 3D interactions that undergo marked reorganization at the submegabase scale during differentiation. Distinct combinations of CCCTC-binding factor (CTCF), Mediator, and cohesin show widespread enrichment in chromatin interactions at different length scales. CTCF/cohesin anchor long-range constitutive interactions that might form the topological basis for invariant subdomains. Conversely, Mediator/cohesin bridge short-range enhancer-promoter interactions within and between larger subdomains. Knockdown of Smc1 or Med12 in embryonic stem cells results in disruption of spatial architecture and downregulation of genes found in cohesin-mediated interactions. We conclude that cell-type-specific chromatin organization occurs at the submegabase scale and that architectural proteins shape the genome in hierarchical length scales.


Assuntos
Linhagem da Célula , Cromatina/metabolismo , Genoma , Proteínas Nucleares/análise , Animais , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Complexo Mediador/genética , Complexo Mediador/metabolismo , Camundongos , Células-Tronco Neurais/química , Células-Tronco Neurais/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Análise de Sequência de DNA , Coesinas
2.
Nucleic Acids Res ; 50(4): e22, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34850128

RESUMO

MicroRNAs (miRNAs or miRs) are single-stranded, ∼22-nucleotide noncoding RNAs that regulate many cellular processes. While numerous miRNA quantification technologies are available, a recent analysis of 12 commercial platforms revealed high variations in reproducibility, sensitivity, accuracy, specificity and concordance within and/or between platforms. Here, we developed a universal hairpin primer (UHP) system that negates the use of miRNA-specific hairpin primers (MsHPs) for quantitative reverse transcription PCR (RT-qPCR)-based miRNA quantification. Specifically, we analyzed four UHPs that share the same hairpin structure but are anchored with two, three, four and six degenerate nucleotides at 3'-ends (namely UHP2, UHP3, UHP4 and UHP6), and found that the four UHPs yielded robust RT products and quantified miRNAs with high efficiency. UHP-based RT-qPCR miRNA quantification was not affected by long transcripts. By analyzing 14 miRNAs, we demonstrated that UHP4 closely mimicked MsHPs in miRNA quantification. Fine-tuning experiments identified an optimized UHP (OUHP) mix with a molar composition of UHP2:UHP4:UHP6 = 8:1:1, which closely recapitulated MsHPs in miRNA quantification. Using synthetic LET7 isomiRs, we demonstrated that the OUHP-based qPCR system exhibited high specificity and sensitivity. Collectively, our results demonstrate that the OUHP system can serve as a reliable and cost-effective surrogate of MsHPs for RT-qPCR-based miRNA quantification for basic research and precision medicine.


Assuntos
MicroRNAs , Análise Custo-Benefício , Primers do DNA/genética , MicroRNAs/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
J Digit Imaging ; 36(3): 1180-1188, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36629989

RESUMO

Treatment of hepatocellular carcinoma (HCC) with Y90 radioembolization segmentectomy (Y90-RE) demonstrates a tumor dose-response threshold, where dose estimates are highly dependent on accurate SPECT/CT acquisition, registration, and reconstruction. Any error can result in distorted absorbed dose distributions and inaccurate estimates of treatment success. This study improves upon the voxel-based dosimetry model, one of the most accurate methods available clinically, by using a deep convolutional network ensemble to account for the spatially variable uptake of Y90 within a treated lesion. A retrospective analysis was conducted in patients with HCC who received Y90-RE at a single institution. Seventy-seven patients with 103 lesions met the inclusion criteria: three or fewer tumors, pre- and post treatment MRI, and no prior Y90-RE. Lesions were labeled as complete (n = 57) or incomplete response (n = 46) based on 3-month post treatment MRI and divided by medical record number into a 20% hold-out test set and 80% training set with 5-fold cross-validation. Slice-wise predictions were made from an average ensemble of models and thresholds from the highest accuracy epochs across all five folds. Lesion predictions were made by thresholding all slice predictions through the lesion. When compared to the voxel-based dosimetry model, our model had a higher F1-score (0.72 vs. 0.2), higher accuracy (0.65 vs. 0.60), and higher sensitivity (1.0 vs. 0.11) at predicting complete treatment response. This algorithm has the potential to identify patients with treatment failure who may benefit from earlier follow-up or additional treatment.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Neoplasias Hepáticas , Radioisótopos de Ítrio , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/radioterapia , Resultado do Tratamento , Embolização Terapêutica/métodos , Radioisótopos de Ítrio/uso terapêutico , Relação Dose-Resposta à Radiação , Humanos , Masculino , Feminino , Pessoa de Meia-Idade
4.
Proc Natl Acad Sci U S A ; 116(44): 22347-22352, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611410

RESUMO

Observing the structure and regeneration of the myelin sheath in peripheral nerves following injury and during repair would help in understanding the pathogenesis and treatment of neurological diseases caused by an abnormal myelin sheath. In the present study, transmission electron microscopy, immunofluorescence staining, and transcriptome analyses were used to investigate the structure and regeneration of the myelin sheath after end-to-end anastomosis, autologous nerve transplantation, and nerve tube transplantation in a rat model of sciatic nerve injury, with normal optic nerve, oculomotor nerve, sciatic nerve, and Schwann cells used as controls. The results suggested that the double-bilayer was the structural unit that constituted the myelin sheath. The major feature during regeneration was the compaction of the myelin sheath, wherein the distance between the 2 layers of cell membrane in the double-bilayer became shorter and the adjacent double-bilayers tightly closed together and formed the major dense line. The expression level of myelin basic protein was positively correlated with the formation of the major dense line, and the compacted myelin sheath could not be formed without the anchoring of the lipophilin particles to the myelin sheath.


Assuntos
Bainha de Mielina/ultraestrutura , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Bainha de Mielina/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Ratos
5.
J Vasc Interv Radiol ; 32(5): 752-760, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33642158

RESUMO

PURPOSE: To quantify the relationship of the tumor-to-normal ratio (TNR) attained from the technetium-99m macroaggregated albumin (MAA) and posttreatment yttrium-90 bremsstrahlung (Y90-Brem) single-photon emission computerized tomography (SPECT)/computer tomography (CT) studies in patients with hepatocellular carcinoma (HCC) treated with glass microspheres. MATERIALS AND METHODS: Retrospectively, a total of 190 consecutive patients with HCC who underwent 204 MAA and Y90-Brem SPECT/CT for glass microsphere Y90 radiation segmentectomy (Y90-RS) or lobar treatment (Y90-RLT) between 2013 and 2018 were included. Semi-automated regions-of-interests were drawn around the targeted tumor and nontumoral liver tissue on the SPECT/CT studies. TNR values from MAA and Y90-Brem SPECT/CT were compared using paired t-tests, Pearson correlation, and median with interquartile ranges (IQR). RESULTS: The mean TNR for MAA and Y90-Brem SPECT/CT was 2.96 ± 1.86 (median, 2.64; IQR, 2.50) and 2.29 ± 1.10 (median, 2.06; IQR, 1.05), respectively (P < .0001). The mean Y90-RLT TNR was 2.88 ± 1.67 (median, 2.59; IQR, 0.83) and 2.17 ± 0.89 (median, 1.98; IQR, 0.81) for MAA and Y90-Brem SPECT/CT, respectively (P < .0001). The mean Y90-RS TNR was 3.02 ± 2.01 (median, 2.87; IQR, 3.01) and 2.39 ± 1.25 (median, 2.11; IQR, 1.28) for MAA and Y90-Brem SPECT/CT, respectively (P = .0003). TNR attained from MAA and Y90 SPECT/CT studies showed a moderate correlation in a positive linear fashion for the overall (r = 0.54; P < .001), Y90-RLT (r = 0.66, P < .001), and Y90-RS cohorts (r = 0.48, P < .001). CONCLUSIONS: The TNR attained from Y90-Brem SPECT/CT is often underestimated, positively correlated, and less variable than that attained from MAA SPECT/CT.


Assuntos
Albuminas , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/radioterapia , Compostos Radiofarmacêuticos/administração & dosagem , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Agregado de Albumina Marcado com Tecnécio Tc 99m , Radioisótopos de Ítrio/administração & dosagem , Idoso , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Feminino , Vidro , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Masculino , Microesferas , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Compostos Radiofarmacêuticos/efeitos adversos , Estudos Retrospectivos , Resultado do Tratamento , Carga Tumoral , Radioisótopos de Ítrio/efeitos adversos
6.
Genes Dis ; 11(3): 101026, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38292186

RESUMO

The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (ß-catenin dependent) and non-canonical (ß-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.

7.
Bioact Mater ; 34: 51-63, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38186960

RESUMO

Effective bone regeneration through tissue engineering requires a combination of osteogenic progenitors, osteoinductive biofactors and biocompatible scaffold materials. Mesenchymal stem cells (MSCs) represent the most promising seed cells for bone tissue engineering. As multipotent stem cells that can self-renew and differentiate into multiple lineages including bone and fat, MSCs can be isolated from numerous tissues and exhibit varied differentiation potential. To identify an optimal progenitor cell source for bone tissue engineering, we analyzed the proliferative activity and osteogenic potential of four commonly-used mouse MSC sources, including immortalized mouse embryonic fibroblasts (iMEF), immortalized mouse bone marrow stromal stem cells (imBMSC), immortalized mouse calvarial mesenchymal progenitors (iCAL), and immortalized mouse adipose-derived mesenchymal stem cells (iMAD). We found that iMAD exhibited highest osteogenic and adipogenic capabilities upon BMP9 stimulation in vitro, whereas iMAD and iCAL exhibited highest osteogenic capability in BMP9-induced ectopic osteogenesis and critical-sized calvarial defect repair. Transcriptomic analysis revealed that, while each MSC line regulated a distinct set of target genes upon BMP9 stimulation, all MSC lines underwent osteogenic differentiation by regulating osteogenesis-related signaling including Wnt, TGF-ß, PI3K/AKT, MAPK, Hippo and JAK-STAT pathways. Collectively, our results demonstrate that adipose-derived MSCs represent optimal progenitor sources for cell-based bone tissue engineering.

8.
Genes Dis ; 11(6): 101344, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39188753

RESUMO

Recombinant adenovirus (rAdV) is a commonly used vector system for gene transfer. Efficient initial packaging and subsequent production of rAdV remains time-consuming and labor-intensive, possibly attributable to rAdV infection-associated oxidative stress and reactive oxygen species (ROS) production. Here, we show that exogenous GAPDH expression mitigates adenovirus-induced ROS-associated apoptosis in HEK293 cells, and expedites adenovirus production. By stably overexpressing GAPDH in HEK293 (293G) and 293pTP (293GP) cells, respectively, we demonstrated that rAdV-induced ROS production and cell apoptosis were significantly suppressed in 293G and 293GP cells. Transfection of 293G cells with adenoviral plasmid pAd-G2Luc yielded much higher titers of Ad-G2Luc at day 7 than that in HEK293 cells. Similarly, Ad-G2Luc was amplified more efficiently in 293G than in HEK293 cells. We further showed that transfection of 293GP cells with pAd-G2Luc produced much higher titers of Ad-G2Luc at day 5 than that of 293pTP cells. 293GP cells amplified the Ad-G2Luc much more efficiently than 293pTP cells, indicating that exogenous GAPDH can further augment pTP-enhanced adenovirus production. These results demonstrate that exogenous GAPDH can effectively suppress adenovirus-induced ROS and thus accelerate adenovirus production. Therefore, the engineered 293GP cells represent a superfast rAdV production system for adenovirus-based gene transfer and gene therapy.

9.
Mult Scler Relat Disord ; 79: 105040, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783195

RESUMO

BACKGROUND: Hydrocephalus is an uncommon manifestation of neurosarcoidosis (7-14% of reported cohorts) that poses unique challenges to patient management. Despite being a recognized complication of neurosarcoidosis, very little is known about how hydrocephalus influences its clinical course, management, and prognosis. OBJECTIVES: To characterize hydrocephalus as a clinical manifestation of neurosarcoidosis, highlight which patients required cerebrospinal fluid (CSF) diversion, understand the mediating role of immunomodulatory treatments, and report outcomes in this cohort. METHODS: Patients with a diagnosis of neurosarcoidosis seen at Emory Healthcare [01/2011-8/2021] were included if hydrocephalus was one manifestation of their disease. Means and proportions were compared between shunted and non-shunted groups using the Wilcoxon rank-sum test for continuous variables and the Fisher's exact test for categorical variables. RESULTS: Twenty-two patients with neurosarcoidosis and hydrocephalus as one disease manifestation were included (22/214, 10.3%). Hydrocephalus was communicating in 13 (13/20, 65.0%) and obstructive in 6 patients (6/20, 30.0%), with features of both seen in 1 patient (1/20, 5.0%). Chronic presentations were typical (12/22, 54.5%) with altered sensorium, gait dysfunction, headache, and weakness being present in the majority of patients. There was a rostral-to-caudal gradient in ventriculomegaly, with the lateral ventricles most affected (20/20, 100%) and the fourth ventricle the least (12/20, 60%). Meningoventricular inflammation was the most common neuroinflammatory accompaniment (18/20, 90.0%), especially infratentorial leptomeningitis (16/20, 80.0%) and fourth ventriculitis (9/20, 45.0%). Thirteen patients (13/22, 59.1%) required ventriculoperitoneal shunts (VPS). Factors associated with shunt placement were younger age at neurosarcoidosis onset (p = 0.019) and hydrocephalus onset (p = 0.015), obstructive hydrocephalus (p = 0.043), and lateral ventriculitis (p = 0.043). In the 6 patients (6/13, 46.2%) with preceding extraventricular drain (EVD) placement, all failed to wean, including 5/6 patients who received high-dose steroids while the EVD was in place. Almost all (19/20, 95.0%) were treated with steroid-sparing agents, including nine (9/20, 45.0%) with tumor necrosis factor (TNF) inhibitors. Modified Rankin Scale score at last outcome was 3.04 (range 0-6). CONCLUSION: Patients with neurosarcoidosis and hydrocephalus experience unique challenges in the management of their disease, including the potential need for CSF diversion, in addition to traditional anti-inflammatory treatments. Younger patients, those with obstructive hydrocephalus, and those with lateral ventriculitis warrant particular consideration for VPS placement, but the decision to shunt likely remains a highly individualized one. The requirement for multiple lines of immunotherapy beyond steroids and moderate disability at last follow-up suggest hydrocephalus may reflect a more severe form of neurosarcoidosis.


Assuntos
Hidrocefalia , Humanos , Ventriculite Cerebral , Progressão da Doença , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/etiologia , Estudos Retrospectivos , Esteroides
10.
Genes Dis ; 10(4): 1687-1701, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37397523

RESUMO

Ovarian cancer (OC) is one of the most lethal malignancies of the female reproductive system. OC patients are usually diagnosed at advanced stages due to the lack of early diagnosis. The standard treatment for OC includes a combination of debulking surgery and platinum-taxane chemotherapy, while several targeted therapies have recently been approved for maintenance treatment. The vast majority of OC patients relapse with chemoresistant tumors after an initial response. Thus, there is an unmet clinical need to develop new therapeutic agents to overcome the chemoresistance of OC. The anti-parasite agent niclosamide (NA) has been repurposed as an anti-cancer agent and exerts potent anti-cancer activities in human cancers including OC. Here, we investigated whether NA could be repurposed as a therapeutic agent to overcome cisplatin-resistant (CR) in human OC cells. To this end, we first established two CR lines SKOV3CR and OVCAR8CR that exhibit the essential biological characteristics of cisplatin resistance in human cancer. We showed that NA inhibited cell proliferation, suppressed cell migration, and induced cell apoptosis in both CR lines at a low micromole range. Mechanistically, NA inhibited multiple cancer-related pathways including AP1, ELK/SRF, HIF1, and TCF/LEF, in SKOV3CR and OVCAR8CR cells. NA was further shown to effectively inhibit xenograft tumor growth of SKOV3CR cells. Collectively, our findings strongly suggest that NA may be repurposed as an efficacious agent to combat cisplatin resistance in chemoresistant human OC, and further clinical trials are highly warranted.

11.
Genes Dis ; 10(4): 1351-1366, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37397543

RESUMO

Recent advances in deep sequencing technologies have revealed that, while less than 2% of the human genome is transcribed into mRNA for protein synthesis, over 80% of the genome is transcribed, leading to the production of large amounts of noncoding RNAs (ncRNAs). It has been shown that ncRNAs, especially long non-coding RNAs (lncRNAs), may play crucial regulatory roles in gene expression. As one of the first isolated and reported lncRNAs, H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis, development, tumorigenesis, osteogenesis, and metabolism. Mechanistically, H19 mediates diverse regulatory functions by serving as competing endogenous RNAs (CeRNAs), Igf2/H19 imprinted tandem gene, modular scaffold, cooperating with H19 antisense, and acting directly with other mRNAs or lncRNAs. Here, we summarized the current understanding of H19 in embryogenesis and development, cancer development and progression, mesenchymal stem cell lineage-specific differentiation, and metabolic diseases. We discussed the potential regulatory mechanisms underlying H19's functions in those processes although more in-depth studies are warranted to delineate the exact molecular, cellular, epigenetic, and genomic regulatory mechanisms underlying the physiological and pathological roles of H19. Ultimately, these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions.

13.
Curr Probl Diagn Radiol ; 51(1): 51-55, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33745768

RESUMO

BACKGROUND: Patients may experience adverse health outcomes when they are unable to manage medical bills. It is currently unknown, however, whether patients talk about cost in the context of medical imaging services they received. MATERIALS AND METHODS: Retrospective qualitative analysis of twitter posts related to medical imaging and cost. Tweets were extracted from twitter, inclusion and exclusion criteria were applied, and tweets were categorized as either "positive" or "negative"; none were "neutral". A qualitative thematic analysis of all included tweets was performed to develop themes and topics expressed. A single tweet may have been assigned several different codes according to its content. A random sampling of the tweets from each topic were selected by the two reviewers, verified by the remaining reviewers, and quoted (Q). RESULTS: Here, 9.8% (n = 99) of tweets relevant to medical imaging were included in the analysis. The majority had a negative sentiment (91%, n = 90) related to themes of (1) cost of care (47%, n = 42), (2) care delivery (23%, n = 21), (3) insurance Issues (23%, n = 21), and (4) need for information (7%, n = 6). A few positive tweets (9%, n = 9) were related to themes of (1) Gratitude (44%, n = 4), (2) Affordability (33%, n = 3), and (3) Better than expected (22%, n = 2). CONCLUSION: Among tweets related to medical imaging we found that 10% relate to cost and that these are overwhelmingly negative, mostly due to perceived high cost of care, deficient care delivery, and insurance issues.


Assuntos
Mídias Sociais , Atitude , Atenção à Saúde , Diagnóstico por Imagem , Humanos , Estudos Retrospectivos
14.
Radiol Artif Intell ; 4(2): e210114, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35391770

RESUMO

Artificial intelligence has become a ubiquitous term in radiology over the past several years, and much attention has been given to applications that aid radiologists in the detection of abnormalities and diagnosis of diseases. However, there are many potential applications related to radiologic image quality, safety, and workflow improvements that present equal, if not greater, value propositions to radiology practices, insurance companies, and hospital systems. This review focuses on six major categories for artificial intelligence applications: study selection and protocoling, image acquisition, worklist prioritization, study reporting, business applications, and resident education. All of these categories can substantially affect different aspects of radiology practices and workflows. Each of these categories has different value propositions in terms of whether they could be used to increase efficiency, improve patient safety, increase revenue, or save costs. Each application is covered in depth in the context of both current and future areas of work. Keywords: Use of AI in Education, Application Domain, Supervised Learning, Safety © RSNA, 2022.

15.
Cell Biosci ; 12(1): 159, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138472

RESUMO

BACKGROUND: A healthy alveolar epithelium is critical to the gas exchange function of the lungs. As the major cell type of alveolar epithelium, alveolar type 2 (AT2) cells play a critical role in maintaining pulmonary homeostasis by serving as alveolar progenitors during lung injury, inflammation, and repair. Dysregulation of AT2 cells may lead to the development of acute and chronic lung diseases and cancer. The lack of clinically relevant AT2 cell models hampers our ability to understand pulmonary diseases. Here, we sought to establish reversibly immortalized mouse pulmonary alveolar type 2 cells (imPAC2) and investigate their potential in forming alveolar organoids to model pulmonary diseases. METHODS: Primary mouse pulmonary alveolar cells (mPACs) were isolated and immortalized with a retroviral expression of SV40 Large T antigen (LTA). Cell proliferation and survival was assessed by crystal violet staining and WST-1 assays. Marker gene expression was assessed by qPCR, Western blotting, and/or immunostaining. Alveolar organoids were generated by using matrigel. Ad-TGF-ß1 was used to transiently express TGF-ß1. Stable silencing ß-catenin or overexpression of mutant KRAS and TP53 was accomplished by using retroviral vectors. Subcutaneous cell implantations were carried out in athymic nude mice. The retrieved tissue masses were subjected to H & E histologic evaluation. RESULTS: We immortalized primary mPACs with SV40 LTA to yield the imPACs that were non-tumorigenic and maintained long-term proliferative activity that was reversible by FLP-mediated removal of SV40 LTA. The EpCAM+ AT2-enriched subpopulation (i.e., imPAC2) was sorted out from the imPACs, and was shown to express AT2 markers and form alveolar organoids. Functionally, silencing ß-catenin decreased the expression of AT2 markers in imPAC2 cells, while TGF-ß1 induced fibrosis-like response by regulating the expression of epithelial-mesenchymal transition markers in the imPAC2 cells. Lastly, concurrent expression of oncogenic KRAS and mutant TP53 rendered the imPAC2 cells a tumor-like phenotype and activated lung cancer-associated pathways. Collectively, our results suggest that the imPAC2 cells may faithfully represent AT2 populations that can be further explored to model pulmonary diseases.

16.
Bioeng Transl Med ; 7(3): e10306, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176604

RESUMO

Effective and safe liver-directed gene therapy has great promise in treating a broad range of liver diseases. While adenoviral (Ad) vectors have been widely used for efficacious in vivo gene delivery, their translational utilities are severely limited due to the short duration of transgene expression and solicitation of host immune response. Used as a promising polymeric vehicle for drug release and nucleic acid delivery, carboxymethyl chitosan (CMC) is biocompatible, biodegradable, anti-microbial, inexpensive, and easy accessible. Here, by exploiting its biocompatibility, controlled release capability and anti-inflammatory activity, we investigated whether CMC can overcome the shortcomings of Ad-mediated gene delivery, hence improving the prospect of Ad applications in gene therapy. We demonstrated that in the presence of optimal concentrations of CMC, Ad-mediated transgene expression lasted up to 50 days after subcutaneous injection, and at least 7 days after intrahepatic injection. Histologic evaluation and immunohistochemical analysis revealed that CMC effectively alleviated Ad-induced host immune response. In our proof-of-principle experiment using the CCl4-induced experimental mouse model of chronic liver damage, we demonstrated that repeated intrahepatic administrations of Ad-IL10 mixed with CMC effectively mitigated the development of hepatic fibrosis. Collectively, these results indicate that CMC can improve the prospect of Ad-mediated gene therapy by diminishing the host immune response while allowing readministration and sustained transgene expression.

17.
Genes Dis ; 9(6): 1608-1623, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36157497

RESUMO

Cutaneous melanoma is a common cancer and cases have steadily increased since the mid 70s. For some patients, early diagnosis and surgical removal of melanomas is lifesaving, while other patients typically turn to molecular targeted therapies and immunotherapies as treatment options. Easy sampling of melanomas allows the scientific community to identify the most prevalent mutations that initiate melanoma such as the BRAF, NRAS, and TERT genes, some of which can be therapeutically targeted. Though initially effective, many tumors acquire resistance to the targeted therapies demonstrating the need to investigate compensatory pathways. Immunotherapies represent an alternative to molecular targeted therapies. However, inter-tumoral immune cell populations dictate initial therapeutic response and even tumors that responded to treatment develop resistance in the long term. As the protocol for combination therapies develop, so will our scientific understanding of the many pathways at play in the progression of melanoma. The future direction of the field may be to find a molecule that connects all of the pathways. Meanwhile, noncoding RNAs have been shown to play important roles in melanoma development and progression. Studying noncoding RNAs may help us to understand how resistance - both primary and acquired - develops; ultimately allow us to harness the true potential of current therapies. This review will cover the basic structure of the skin, the mutations and pathways responsible for transforming melanocytes into melanomas, the process by which melanomas metastasize, targeted therapeutics, and the potential that noncoding RNAs have as a prognostic and treatment tool.

18.
Bioact Mater ; 9: 523-540, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34820586

RESUMO

Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization. Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation. Although significant progress has been made in developing novel scaffolds and/or cell-based therapeutic strategies to promote wound healing, effective management of large chronic skin wounds remains a clinical challenge. Keratinocytes are critical to re-epithelialization and wound healing. Here, we investigated whether exogenous keratinocytes, in combination with a citrate-based scaffold, enhanced skin wound healing. We first established reversibly immortalized mouse keratinocytes (iKera), and confirmed that the iKera cells expressed keratinocyte markers, and were responsive to UVB treatment, and were non-tumorigenic. In a proof-of-principle experiment, we demonstrated that iKera cells embedded in citrate-based scaffold PPCN provided more effective re-epithelialization and cutaneous wound healing than that of either PPCN or iKera cells alone, in a mouse skin wound model. Thus, these results demonstrate that iKera cells may serve as a valuable skin epithelial source when, combining with appropriate biocompatible scaffolds, to investigate cutaneous wound healing and skin regeneration.

19.
Genes Dis ; 9(2): 347-357, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35224151

RESUMO

The treatment of cancer mainly involves surgical excision supplemented by radiotherapy and chemotherapy. Chemotherapy drugs act by interfering with tumor growth and inducing the death of cancer cells. Anti-tumor drugs were developed to induce apoptosis, but some patient's show apoptosis escape and chemotherapy resistance. Therefore, other forms of cell death that can overcome the resistance of tumor cells are important in the context of cancer treatment. Ferroptosis is a newly discovered iron-dependent, non-apoptotic type of cell death that is highly negatively correlated with cancer development. Ferroptosis is mainly caused by the abnormal increase in iron-dependent lipid reactive oxygen species and the imbalance of redox homeostasis. This review summarizes the progression and regulatory mechanism of ferroptosis in cancer and discusses its possible clinical applications in cancer diagnosis and treatment.

20.
Nucl Med Commun ; 42(8): 892-898, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795611

RESUMO

PURPOSE: To evaluate the relationship between Yttrium-90 (Y90) tumour dose and response rate in patients with hepatocellular carcinoma (HCC) who undergo Y90 radiation segmentectomy (Y90-RS) and to determine implication on overall survival (OS). MATERIALS AND METHODS: Post Y90-RS Bremsstrahlung single-photon emission computed tomography/CT of 105 HCC patients with 110 treatments performed with glass microspheres was retrospectively analysed. The dose-volume histogram of the targeted tumour was determined with commercially available dosimetry software. Tumour response at 3 months was evaluated using modified Response Evaluation Criteria in Solid Tumours. Tumour dose thresholds associated with the objective response with 80% specificity were then used to evaluate implication on OS using Kaplan-Meier estimation and log-rank analysis. RESULTS: Tumour dose thresholds to predict objective response with 80% specificity were the following: maximum tumour dose (748 Gy), mean tumour dose (568 Gy), minimum tumour dose of 30% tumour volume (608 Gy), minimum tumour dose of 50% tumour volume (565 Gy), minimum tumour dose of 70% tumour volume (464 Gy) and minimum tumour dose of 100% tumour volume (213 Gy). These parameters all significantly predicted tumour response with areas under the ROC curve of >0.6. Mean tumour dose of ≥250 Gy predicted median OS of 43.67 vs. 17.87 months for others (P = 0.026). Minimum dose ≥180 Gy to 100% of tumour volume predicted median OS of 44.93 vs. 35.87 months for others (P = 0.043). CONCLUSION: In patients with HCC undergoing Y90-RS, mean tumour dose ≥250 Gy and minimum tumour dose of ≥180 Gy to 100% of tumour volume are both significantly correlated with higher objective tumour response and prolonged survival.


Assuntos
Carcinoma Hepatocelular , Pneumonectomia , Radioisótopos de Ítrio , Idoso , Embolização Terapêutica , Humanos , Neoplasias Hepáticas , Pessoa de Meia-Idade , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA