RESUMO
Long non-coding RNAs (lncRNAs) are emerging as a major class of gene products that have central roles in cell and developmental biology. Natural antisense transcripts (NATs) are an important subset of lncRNAs that are expressed from the opposite strand of protein-coding and non-coding genes and are a genome-wide phenomenon in both eukaryotes and prokaryotes. In eukaryotes, a myriad of NATs participate in regulatory pathways that affect expression of their cognate sense genes. Recent developments in the study of NATs and lncRNAs and large-scale sequencing and bioinformatics projects suggest that whether NATs regulate expression, splicing, stability or translation of the sense transcript is influenced by the pattern and degrees of overlap between the sense-antisense pair. Moreover, epigenetic gene regulatory mechanisms prevail in somatic cells whereas mechanisms dependent on the formation of double-stranded RNA intermediates are prevalent in germ cells. The modulating effects of NATs on sense transcript expression make NATs rational targets for therapeutic interventions.
Assuntos
Regulação da Expressão Gênica , RNA Antissenso , RNA Longo não Codificante , RNA Antissenso/genética , Humanos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Epigênese GenéticaRESUMO
Activity of central amygdala (CeA) PKCδ expressing neurons has been linked to appetite regulation, anxiety-like behaviors, pain sensitivity, and addiction-related behaviors. Studies of the role that CeA PKCδ+ neurons play in these behaviors have largely been carried out in mice, and genetic tools that would allow selective manipulation of PKCδ+ cells in rats have been lacking. Here, we used a CRISPR/Cas9 strategy to generate a transgenic Prkcd-cre knock-in rat and characterized this model using anatomical, electrophysiological, and behavioral approaches in both sexes. In the CeA, Cre was selectively expressed in PKCδ+ cells. Anterograde projections of PKCδ+ neurons to cortical regions, subcortical regions, several hypothalamic nuclei, the amygdala complex, and midbrain dopaminergic regions were largely consistent with published mouse data. In a behavioral screen, we found no differences between Cre+ rats and Cre- wild-type littermates. Optogenetic stimulation of CeA PKCδ+ neurons in a palatable food intake assay resulted in an increased latency to first feeding and decreased total food intake, once again replicating published mouse findings. Lastly, using a real-time place preference task, we found that stimulation of PKCδ+ neurons promoted aversion, without affecting locomotor activity. Collectively, these findings establish the novel Prkcd-Cre rat line as a valuable tool that complements available mouse lines for investigating the functional role of PKCδ+ neurons.
Assuntos
Proteína Quinase C-delta , Animais , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Ratos , Masculino , Feminino , Ratos Transgênicos , Neurônios/fisiologia , Núcleo Central da Amígdala/fisiologia , Integrases/genética , Optogenética/métodos , Ratos Sprague-DawleyRESUMO
Methamphetamine use disorder (MUD) is a chronic, relapsing disease that is characterized by repeated drug use despite negative consequences and for which there are currently no FDA-approved cessation therapeutics. Repeated methamphetamine (METH) use induces long-term gene expression changes in brain regions associated with reward processing and drug-seeking behavior, and recent evidence suggests that methamphetamine-induced neuroinflammation may also shape behavioral and molecular responses to the drug. Microglia, the resident immune cells in the brain, are principal drivers of neuroinflammatory responses and contribute to the pathophysiology of substance use disorders. Here, we investigated transcriptional and morphological changes in dorsal striatal microglia in response to methamphetamine-taking and during methamphetamine abstinence, as well as their functional contribution to drug-taking behavior. We show that methamphetamine self-administration induces transcriptional changes associated with protein folding, mRNA processing, immune signaling, and neurotransmission in dorsal striatal microglia. Importantly, many of these transcriptional changes persist through abstinence, a finding supported by morphological analyses. Functionally, we report that microglial ablation increases methamphetamine-taking, possibly involving neuroimmune and neurotransmitter regulation. In contrast, microglial depletion during abstinence does not alter methamphetamine-seeking. Taken together, these results suggest that methamphetamine induces both short and long-term changes in dorsal striatal microglia that contribute to altered drug-taking behavior and may provide valuable insights into the pathophysiology of MUD.
Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Comportamento de Procura de Droga , Metanfetamina , Microglia , Autoadministração , Metanfetamina/farmacologia , Microglia/metabolismo , Microglia/efeitos dos fármacos , Animais , Masculino , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia , Camundongos , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Reforço Psicológico , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacosRESUMO
The past decade has seen an explosion of interest in long noncoding RNAs (lncRNAs). However, despite the massive volume of scientific data implicating these transcripts in a plethora of molecular and cellular processes, a great deal of controversy surrounds these RNAs. One of the main reasons for this lies in the multiple unique features of lncRNAs which limit the available methods used to characterize them. Combined with their vast numbers and inadequate classification, comprehensive annotation of these transcripts becomes a daunting task. The solution to this complex challenge likely lies in deep understanding of the strengths and weaknesses of each computational and empirical approach, and integration of multiple strategies to reduce noise, authenticate the results, and classify lncRNAs. We review here both the advantages and caveats of strategies commonly used for functional characterization and annotation of lncRNAs in the context of emerging conceptual guidelines for their application.
Assuntos
Anotação de Sequência Molecular , RNA Longo não Codificante/genética , Análise de Sequência de RNA/métodos , Humanos , RNA Longo não Codificante/classificaçãoRESUMO
Besides his vast contribution to the opioid receptor studies, Dr. G. W. Pasternak was among the early pioneers in the antisense oligonucleotide (ASO) field at the time when the crucial in vivo studies using ASO-mediated gene knockdown in the CNS were still impeded by the ASO's inability to cross the blood-brain barrier. This changed at the start of 1990s, when administration of oligonucleotides through intracerebroventricular or, later, intrathecal injection was undertaken at Cornell University Medical College and further developed in close collaboration with Pasternak lab. These early studies eventually led to the practical realization of the significant therapeutic potential of ASO-based drugs we see today.
Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Técnicas de Inativação de Genes/métodos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Medula Espinal/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/fisiologia , Humanos , Injeções Intraventriculares , Injeções Espinhais , Oligonucleotídeos Antissenso/administração & dosagem , Medula Espinal/efeitos dos fármacosRESUMO
Mammalian genomes encode numerous natural antisense transcripts, but the function of these transcripts is not well understood. Functional validation studies indicate that antisense transcripts are not a uniform group of regulatory RNAs but instead belong to multiple categories with some common features. Recent evidence indicates that antisense transcripts are frequently functional and use diverse transcriptional and post-transcriptional gene regulatory mechanisms to carry out a wide variety of biological roles.
Assuntos
Regulação da Expressão Gênica/fisiologia , RNA Antissenso/fisiologia , Animais , HumanosRESUMO
Epigenetic enzymes oversee long-term changes in gene expression by integrating genetic and environmental cues. While there are hundreds of enzymes that control histone and DNA modifications, their potential roles in substance abuse and alcohol dependence remain underexplored. A few recent studies have suggested that epigenetic processes could underlie transcriptomic and behavioral hallmarks of alcohol addiction. In the present study, we sought to identify epigenetic enzymes in the brain that are dysregulated during protracted abstinence as a consequence of chronic and intermittent alcohol exposure. Through quantitative mRNA expression analysis of over 100 epigenetic enzymes, we identified 11 that are significantly altered in alcohol-dependent rats compared with controls. Follow-up studies of one of these enzymes, the histone demethylase KDM6B, showed that this enzyme exhibits region-specific dysregulation in the prefrontal cortex and nucleus accumbens of alcohol-dependent rats. KDM6B was also upregulated in the human alcoholic brain. Upregulation of KDM6B protein in alcohol-dependent rats was accompanied by a decrease of trimethylation levels at histone H3, lysine 27 (H3K27me3), consistent with the known demethylase specificity of KDM6B. Subsequent epigenetic (chromatin immunoprecipitation [ChIP]-sequencing) analysis showed that alcohol-induced changes in H3K27me3 were significantly enriched at genes in the IL-6 signaling pathway, consistent with the well-characterized role of KDM6B in modulation of inflammatory responses. Knockdown of KDM6B in cultured microglial cells diminished IL-6 induction in response to an inflammatory stimulus. Our findings implicate a novel KDM6B-mediated epigenetic signaling pathway integrated with inflammatory signaling pathways that are known to underlie the development of alcohol addiction.
Assuntos
Alcoolismo/genética , Histona Desmetilases com o Domínio Jumonji/genética , Animais , Células Cultivadas , Epigênese Genética , Etanol/metabolismo , Histona Desmetilases/genética , Histonas/metabolismo , Humanos , Córtex Pré-Frontal/metabolismo , Ratos , Transdução de Sinais , Regulação para CimaRESUMO
Alzheimer's disease (AD) is the leading cause of age-related dementia. Neuropathological hallmarks of AD include brain deposition of ß-amyloid (Aß) plaques and accumulation of both hyperphosphorylated and acetylated tau. RGFP-966, a brain-penetrant and selective HDAC3 inhibitor, or HDAC3 silencing, increases BDNF expression, increases histone H3 and H4 acetylation, decreases tau phosphorylation and tau acetylation at disease-associated sites, reduces ß-secretase cleavage of the amyloid precursor protein (APP), and decreases Aß1-42 accumulation in HEK-293 cells overexpressing APP with the double Swedish mutation (HEK/APPsw). In the triple transgenic AD mouse model (3xTg-AD), repeated administration of 3 and 10 mg/kg of RGFP-966 reverses pathological tau phosphorylation at Thr181, Ser202, and Ser396, increases levels of the Aß degrading enzyme Neprilysin in plasma, decreases Aß1-42 protein levels in the brain and periphery, and improves spatial learning and memory. Finally, we show that RGFP-966 decreases Aß1-42 accumulation and both tau acetylation and phosphorylation at disease residues in neurons derived from induced pluripotent stem cells obtained from APOEε4-carrying AD patients. These data indicate that HDAC3 plays an important regulatory role in the expression and regulation of proteins associated with AD pathophysiology, supporting the notion that HDAC3 may be a disease-modifying therapeutic target.
Assuntos
Acrilamidas/farmacologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Memória/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Aprendizagem Espacial/efeitos dos fármacos , Proteínas tau/metabolismo , Acetilação/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Inativação Gênica , Células HEK293 , Histona Desacetilases/genética , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Camundongos Transgênicos , Neprilisina/sangue , Neurônios/citologia , Fosforilação/efeitos dos fármacosRESUMO
Histone deacetylase (HDAC) inhibitors may have therapeutic utility in multiple neurological and psychiatric disorders, but the underlying mechanisms remain unclear. Here, we identify BRD4, a BET bromodomain reader of acetyl-lysine histones, as an essential component involved in potentiated expression of brain-derived neurotrophic factor (BDNF) and memory following HDAC inhibition. In in vitro studies, we reveal that pharmacological inhibition of BRD4 reversed the increase in BDNF mRNA induced by the class I/IIb HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Knock-down of HDAC2 and HDAC3, but not other HDACs, increased BDNF mRNA expression, whereas knock-down of BRD4 blocked these effects. Using dCas9-BRD4, locus-specific targeting of BRD4 to the BDNF promoter increased BDNF mRNA. In additional studies, RGFP966, a pharmacological inhibitor of HDAC3, elevated BDNF expression and BRD4 binding to the BDNF promoter, effects that were abrogated by JQ1 (an inhibitor of BRD4). Examining known epigenetic targets of BRD4 and HDAC3, we show that H4K5ac and H4K8ac modifications and H4K5ac enrichment at the BDNF promoter were elevated following RGFP966 treatment. In electrophysiological studies, JQ1 reversed RGFP966-induced enhancement of LTP in hippocampal slice preparations. Last, in behavioral studies, RGFP966 increased subthreshold novel object recognition memory and cocaine place preference in male C57BL/6 mice, effects that were reversed by cotreatment with JQ1. Together, these data reveal that BRD4 plays a key role in HDAC3 inhibitor-induced potentiation of BDNF expression, neuroplasticity, and memory.SIGNIFICANCE STATEMENT Some histone deacetylase (HDAC) inhibitors are known to have neuroprotective and cognition-enhancing properties, but the underlying mechanisms have yet to be fully elucidated. In the current study, we reveal that BRD4, an epigenetic reader of histone acetylation marks, is necessary for enhancing brain-derived neurotrophic factor (BDNF) expression and improved memory following HDAC inhibition. Therefore, by identifying novel epigenetic regulators of BDNF expression, these data may lead to new therapeutic targets for the treatment of neuropsychiatric disorders.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Inibidores de Histona Desacetilases/farmacologia , Memória/efeitos dos fármacos , Acrilamidas/farmacologia , Animais , Azepinas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Epigênese Genética , Técnicas de Silenciamento de Genes , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Fenilenodiaminas/farmacologia , Ratos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Triazóis/farmacologia , Vorinostat/farmacologiaRESUMO
For most psychiatric diseases, pathogenetic concepts as well as paradigms underlying neuropsychopharmacologic approaches currently revolve around neurotransmitters such as dopamine, serotonin, and norepinephrine. However, despite the fact that several generations of neurotransmitter-based psychotropics including atypical antipsychotics, selective serotonin reuptake inhibitors, and serotonin-norepinephrine reuptake inhibitors are available, the effectiveness of these medications is limited, and relapse rates in psychiatric diseases are relatively high, indicating potential involvement of other pathogenetic pathways. Indeed, recent high-throughput studies in genetics and molecular biology have shown that pathogenesis of major psychiatric illnesses involves hundreds of genes and numerous pathways via such fundamental processes as DNA methylation, transcription, and splicing. Current review summarizes these and other molecular mechanisms of such psychiatric illnesses as schizophrenia, major depressive disorder, and alcohol use disorder and suggests a conceptual framework for future studies.
Assuntos
Antidepressivos/uso terapêutico , Antipsicóticos/uso terapêutico , Dopamina/metabolismo , Transtornos Mentais/tratamento farmacológico , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Humanos , Serotonina/metabolismoRESUMO
We present a rationale for expanding the presence of the Lisp family of programming languages in bioinformatics and computational biology research. Put simply, Lisp-family languages enable programmers to more quickly write programs that run faster than in other languages. Languages such as Common Lisp, Scheme and Clojure facilitate the creation of powerful and flexible software that is required for complex and rapidly evolving domains like biology. We will point out several important key features that distinguish languages of the Lisp family from other programming languages, and we will explain how these features can aid researchers in becoming more productive and creating better code. We will also show how these features make these languages ideal tools for artificial intelligence and machine learning applications. We will specifically stress the advantages of domain-specific languages (DSLs): languages that are specialized to a particular area, and thus not only facilitate easier research problem formulation, but also aid in the establishment of standards and best programming practices as applied to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the most comprehensive Lisp dialect, which is commonly referred to as the 'programmable programming language'. We are convinced that Lisp grants programmers unprecedented power to build increasingly sophisticated artificial intelligence systems that may ultimately transform machine learning and artificial intelligence research in bioinformatics and computational biology.
Assuntos
Inteligência Artificial , Biologia Computacional/métodos , Linguagens de Programação , SoftwareRESUMO
Additional Sex Combs-Like 1 (ASXL1) is mutated at a high frequency in all forms of myeloid malignancies associated with poor prognosis. We generated a Vav1 promoter-driven Flag-Asxl1Y588X transgenic mouse model, Asxl1Y588X Tg, to express a truncated FLAG-ASXL1aa1-587 protein in the hematopoietic system. The Asxl1Y588X Tg mice had an enlarged hematopoietic stem cell (HSC) pool, shortened survival, and predisposition to a spectrum of myeloid malignancies, thereby recapitulating the characteristics of myeloid malignancy patients with ASXL1 mutations. ATAC- and RNA-sequencing analyses revealed that the ASXL1aa1-587 truncating protein expression results in more open chromatin in cKit+ cells compared with wild-type cells, accompanied by dysregulated expression of genes critical for HSC self-renewal and differentiation. Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation experiments showed that ASXL1aa1-587 acquired an interaction with BRD4. An epigenetic drug screening demonstrated a hypersensitivity of Asxl1Y588X Tg bone marrow cells to BET bromodomain inhibitors. This study demonstrates that ASXL1aa1-587 plays a gain-of-function role in promoting myeloid malignancies. Our model provides a powerful platform to test therapeutic approaches of targeting the ASXL1 truncation mutations in myeloid malignancies.
Assuntos
Mutação com Ganho de Função/genética , Leucemia Mieloide/genética , Proteínas Repressoras/genética , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Cromatina/metabolismo , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide/patologia , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Genome-wide association studies (GWAS), relying on hundreds of thousands of individuals, have revealed >200 genomic loci linked to metabolic disease (MD). Loss of insulin sensitivity (IS) is a key component of MD and we hypothesized that discovery of a robust IS transcriptome would help reveal the underlying genomic structure of MD. Using 1,012 human skeletal muscle samples, detailed physiology and a tissue-optimized approach for the quantification of coding (>18,000) and non-coding (>15,000) RNA (ncRNA), we identified 332 fasting IS-related genes (CORE-IS). Over 200 had a proven role in the biochemistry of insulin and/or metabolism or were located at GWAS MD loci. Over 50% of the CORE-IS genes responded to clinical treatment; 16 quantitatively tracking changes in IS across four independent studies (P = 0.0000053: negatively: AGL, G0S2, KPNA2, PGM2, RND3 and TSPAN9 and positively: ALDH6A1, DHTKD1, ECHDC3, MCCC1, OARD1, PCYT2, PRRX1, SGCG, SLC43A1 and SMIM8). A network of ncRNA positively related to IS and interacted with RNA coding for viral response proteins (P < 1 × 10-48), while reduced amino acid catabolic gene expression occurred without a change in expression of oxidative-phosphorylation genes. We illustrate that combining in-depth physiological phenotyping with robust RNA profiling methods, identifies molecular networks which are highly consistent with the genetics and biochemistry of human metabolic disease.
Assuntos
Predisposição Genética para Doença/genética , Genômica , Resistência à Insulina/genética , Músculo Esquelético/metabolismo , Transcriptoma , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Exercício Físico , Perfilação da Expressão Gênica , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Humanos , Insulina/metabolismo , Doenças Metabólicas/genética , Modelos Moleculares , Fosforilação Oxidativa , Locos de Características Quantitativas , RNA/metabolismoRESUMO
Alzheimer's disease (AD) comprises multifactorial ailments for which current therapeutic strategies remain insufficient to broadly address the underlying pathophysiology. Epigenetic gene regulation relies upon multifactorial processes that regulate multiple gene and protein pathways, including those involved in AD. We therefore took an epigenetic approach where a single drug would simultaneously affect the expression of a number of defined AD-related targets. We show that the small-molecule histone deacetylase inhibitor M344 reduces beta-amyloid (Aß), reduces tau Ser396 phosphorylation, and decreases both ß-secretase (BACE) and APOEε4 gene expression. M344 increases the expression of AD-relevant genes: BDNF, α-secretase (ADAM10), MINT2, FE65, REST, SIRT1, BIN1, and ABCA7, among others. M344 increases sAPPα and CTFα APP metabolite production, both cleavage products of ADAM10, concordant with increased ADAM10 gene expression. M344 also increases levels of immature APP, supporting an effect on APP trafficking, concurrent with the observed increase in MINT2 and FE65, both shown to increase immature APP in the early secretory pathway. Chronic i.p. treatment of the triple transgenic (APPsw/PS1M146V/TauP301L) mice with M344, at doses as low as 3 mg/kg, significantly prevented cognitive decline evaluated by Y-maze spontaneous alternation, novel object recognition, and Barnes maze spatial memory tests. M344 displays short brain exposure, indicating that brief pulses of daily drug treatment may be sufficient for long-term efficacy. Together, these data show that M344 normalizes several disparate pathogenic pathways related to AD. M344 therefore serves as an example of how a multitargeting compound could be used to address the polygenic nature of multifactorial diseases.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Memória/efeitos dos fármacos , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Memória/fisiologia , Camundongos Transgênicos , Fragmentos de Peptídeos/metabolismo , Proteínas Repressoras/genética , VorinostatRESUMO
Besides its key role in neural development, brain-derived neurotrophic factor (BDNF) is important for long-term potentiation and neurogenesis, which makes it a critical factor in learning and memory. Due to the important role of BDNF in synaptic function and plasticity, an in-house epigenetic library was screened against human neural progenitor cells (HNPCs) and WS1 human skin fibroblast cells using Cell-to-Ct assay kit to identify the small compounds capable of modulating the BDNF expression. In addition to two well-known hydroxamic acid-based histone deacetylase inhibitors (hb-HDACis), SAHA and TSA, several structurally similar HDAC inhibitors including SB-939, PCI-24781 and JNJ-26481585 with even higher impact on BDNF expression, were discovered in this study. Furthermore, by using well-developed immunohistochemistry assays, the selected compounds were also proved to have neurogenic potential improving the neurite outgrowth in HNPCs-derived neurons. In conclusion, we proved the neurogenic potential of several hb-HDACis, alongside their ability to enhance BDNF expression, which by modulating the neurogenesis and/or compensating for neuronal loss, could be propitious for treatment of neurological disorders.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Inibidores de Histona Desacetilases/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Crescimento Neuronal , Benzimidazóis/farmacologia , Benzofuranos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Ácidos Hidroxâmicos/farmacologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismoRESUMO
Glioblastoma multiforme (GBM) is the most common and aggressive malignant adult primary brain tumor. Despite surgical resection followed by radiotherapy and chemotherapy, the median survival rate is approximately 14 months. Although experimental therapies are in clinical trials for GBM, there is an urgent need for a peripheral GBM biomarker for measuring treatment response. As we have previously demonstrated that the long noncoding RNA HOX Transcript Antisense Intergenic RNA, or HOTAIR, is dysregulated in GBM and required for GBM cell proliferation, we hypothesized that HOTAIR expression may be utilized as a peripheral biomarker for GBM. HOTAIR expression was measured in serum from 43 GBM and 40 controls using quantitative real-time PCR (qRT-PCR). The PCR products were subsequently subcloned into pCR™4-TOPO®TA vectors for DNA sequencing. A ROC curve was also generated to examine HOTAIR's prognostic value. The amount of HOTAIR in serum exosomes and exosome-depleted supernatant was calculated by qRT-PCR. The relative HOTAIR expression was also investigated in 15 pairs of GBM serum and tumors. We detected HOTAIR in serum from GBM patients. HOTAIR levels in serum samples from GBM patients was significantly higher than in the corresponding controls (P < 0.0001). The area under the ROC curve distinguishing GBM patients from controls was 0.913 (95% CI: 0.845-0.982, P < 0.0001), with 86.1% sensitivity and 87.5% specificity at the cut-off value of 10.8. HOTAIR expression was significantly correlated with high grade brain tumors. In addition, Pearson correlation analysis indicated a medium correlation of serum HOTAIR levels and the corresponding tumor HOTAIR levels (r = 0.734, P < 0.01). We confirmed via sequencing that the amplified HOTAIR from serum contained the HOTAIR sequence and maps to the known HOTAIR locus at 12q13. The serum-derived exosomes contain HOTAIR and the purified exosomes were validated by western blot and nanoparticle tracking analysis. Importantly, our results demonstrate that serum HOTAIR can be used as a novel prognostic and diagnostic biomarker for GBM.
Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Ácidos Nucleicos Livres , Glioblastoma/diagnóstico , Glioblastoma/genética , RNA Longo não Codificante/genética , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/mortalidade , Exossomos , Glioblastoma/sangue , Glioblastoma/mortalidade , Humanos , Prognóstico , RNA Longo não Codificante/sangue , Curva ROCRESUMO
BACKGROUND: With the capacity to modulate gene networks in an environmentally-sensitive manner, the role of epigenetic systems in mental disorders has come under intense investigation. Dysregulation of epigenetic effectors, including microRNAs and histone-modifying enzymes, may better explain the role of environmental risk factors and the observed heritability rate that cannot be fully attributed to known genetic risk alleles. Here, we aimed to identify novel epigenetic targets of the schizophrenia-associated microRNA 132 (miR-132). METHODS: Histone modifications were quantified by immunodetection in response to viral-mediated overexpression of miR-132 while a luminescent reporter system was used to validate targets of miR-132 in vitro. Genome-wide profiling, quantitative PCR and NanoSting were used to quantify gene expression in post-mortem human brains, neuronal cultures and prefrontal cortex (PFC) of mice chronically exposed to antipsychotics. Following viral-mediated depletion of Enhancer of Zeste 1 (EZH1) in the murine PFC, behaviors including sociability and motivation were assessed using a 3-chambered apparatus and forced-swim test, respectively. RESULTS: Overexpression of miR-132 decreased global histone 3 lysine 27 tri-methylation (H3K27me3), a repressive epigenetic mark. Moreover, the polycomb-associated H3K27 methyltransferase, EZH1, is regulated by miR-132 and upregulated in the PFC of schizophrenics. Unlike its homolog EZH2, expression of EZH1 in the murine PFC decreased following chronic exposure to antipsychotics. Viral-mediated depletion of EZH1 in the mouse PFC attenuated sociability, enhanced motivational behaviors, and affected gene expression pathways related to neurotransmission and behavioral phenotypes. CONCLUSIONS: EZH1 is dysregulated in schizophrenia, sensitive to antipsychotic medications, and a brain-enriched miR-132 target that controls neurobehavioral phenotypes.
Assuntos
Antipsicóticos/uso terapêutico , Epigênese Genética/fisiologia , Motivação/fisiologia , Complexo Repressor Polycomb 2/biossíntese , Esquizofrenia/metabolismo , Comportamento Social , Adulto , Idoso , Animais , Antipsicóticos/farmacologia , Linhagem Celular Tumoral , Estudos de Coortes , Epigênese Genética/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Motivação/efeitos dos fármacos , Complexo Repressor Polycomb 2/genética , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genéticaRESUMO
Fragile X syndrome (FXS) results from a repeat expansion mutation near the FMR1 gene promoter and is the most common form of heritable intellectual disability and autism. Full mutations larger than 200 CGG repeats trigger FMR1 heterochromatinization and loss of gene expression, which is primarily responsible for the pathological features of FXS . In contrast, smaller pre-mutations of 55200 CGG are associated with FMR1 overexpression and Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset neurodegenerative condition. While the role of 5-methylcytosine (5mC) in FMR1 gene silencing has been studied extensively, the role of 5-hydroxymethylation (5hmC), a newly discovered epigenetic mark produced through active DNA demethylation, has not been previously investigated in FXS neurons. Here, we used two complementary epigenetic assays, 5hmC sensitive restriction digest and ten-eleven translocation-assisted bisulfite pyrosequencing, to quantify FMR1 5mC and 5hmC levels. We observed increased levels of 5hmC at the FMR1 promoter in FXS patient brains with full-mutations relative to pre-mutation carriers and unaffected controls. In addition, we found that 5hmC enrichment at the FMR1 locus in FXS cells is specific to neurons by utilizing a nuclei sorting technique to separate neuronal and glial DNA fractions from post-mortem brain tissues. This FMR1 5hmC enrichment was not present in cellular models of FXS including fibroblasts, lymphocytes and reprogrammed neurons, indicating they do not fully recapitulate this epigenetic feature of disease. Future studies could investigate the potential to leverage this epigenetic pathway to restore FMR1 expression and discern whether levels of 5hmC correlate with phenotypic severity.
Assuntos
Metilação de DNA , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , 5-Metilcitosina/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Inativação Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neurônios/metabolismo , Neurônios/patologia , Regiões Promotoras Genéticas , Expansão das Repetições de TrinucleotídeosRESUMO
Advances in the depth and quality of transcriptome sequencing have revealed many new classes of long noncoding RNAs (lncRNAs). lncRNA classification has mushroomed to accommodate these new findings, even though the real dimensions and complexity of the noncoding transcriptome remain unknown. Although evidence of functionality of specific lncRNAs continues to accumulate, conflicting, confusing, and overlapping terminology has fostered ambiguity and lack of clarity in the field in general. The lack of fundamental conceptual unambiguous classification framework results in a number of challenges in the annotation and interpretation of noncoding transcriptome data. It also might undermine integration of the new genomic methods and datasets in an effort to unravel the function of lncRNA. Here, we review existing lncRNA classifications, nomenclature, and terminology. Then, we describe the conceptual guidelines that have emerged for their classification and functional annotation based on expanding and more comprehensive use of large systems biology-based datasets.
Assuntos
RNA Longo não Codificante/classificação , RNA Longo não Codificante/genética , Animais , Humanos , RNA Longo não Codificante/químicaRESUMO
Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlinc RNAs genes likely function in cisto activate nearby genes. This effect while most pronounced in closely spaced vlinc RNA-gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlinc RNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs.