Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oecologia ; 199(3): 711-724, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35739283

RESUMO

Alder (Alnus spp.) and Pacific salmon (Oncorhynchus spp.) provide key nutrient subsidies to freshwater systems. In southwestern Alaska, alder-derived nutrients (ADNs) are increasing as alder cover expands in response to climate warming, while climate change and habitat degradation are reducing marine-derived nutrients (MDNs) in salmon-spawning habitats. To assess the relative influences of ADN and MDN on aquatic microbial community structure and function, we analyzed lake chemistry, bacterial community structure, and microbial metabolism in 13 lakes with varying alder cover and salmon abundance in southwestern Alaska. We conducted bioassays to determine microbial nutrient limitation and physical factors modulating microbial response to nutrient inputs (+N, +P and +NP treatments). Seasonal shifts in bacterial community structure (F = 7.47, P < 0.01) coincided with changes in lake nitrogen (N) and phosphorus (P) concentrations (r2 = 0.19 and 0.16, both P < 0.05), and putrescine degradation (r2 = 0.13, P = 0.06), suggesting the influx and microbial use of MDN. Higher microbial metabolism occurred in summer than spring, coinciding with salmon runs. Increased microbial metabolism occurred in lakes where more salmon spawned. Microbial metabolic activity was unrelated to alder cover, likely because ADN provides less resource diversity than MDN. When nutrients were added to spring samples, there was greater substrate use by microbial communities from lakes with elevated Chl a concentrations and large relative catchment areas (ß estimates for all treatments > 0.56, all P < 0.07). Thus, physical watershed and lake features mediate the effects of nutrient subsidies on aquatic microbial metabolic activity.


Assuntos
Alnus , Microbiota , Animais , Ecossistema , Lagos , Nutrientes , Salmão/metabolismo
2.
Proc Natl Acad Sci U S A ; 110(5): 1750-5, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23322737

RESUMO

Observational data from the past century have highlighted the importance of interdecadal modes of variability in fish population dynamics, but how these patterns of variation fit into a broader temporal and spatial context remains largely unknown. We analyzed time series of stable nitrogen isotopes from the sediments of 20 sockeye salmon nursery lakes across western Alaska to characterize temporal and spatial patterns in salmon abundance over the past ∼500 y. Although some stocks varied on interdecadal time scales (30- to 80-y cycles), centennial-scale variation, undetectable in modern-day catch records and survey data, has dominated salmon population dynamics over the past 500 y. Before 1900, variation in abundance was clearly not synchronous among stocks, and the only temporal signal common to lake sediment records from this region was the onset of commercial fishing in the late 1800s. Thus, historical changes in climate did not synchronize stock dynamics over centennial time scales, emphasizing that ecosystem complexity can produce a diversity of ecological responses to regional climate forcing. Our results show that marine fish populations may alternate between naturally driven periods of high and low abundance over time scales of decades to centuries and suggest that management models that assume time-invariant productivity or carrying capacity parameters may be poor representations of the biological reality in these systems.


Assuntos
Ecossistema , Pesqueiros/estatística & dados numéricos , Sedimentos Geológicos/análise , Salmão/crescimento & desenvolvimento , Alaska , Animais , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Ecologia/métodos , Ecologia/tendências , Pesqueiros/métodos , Geografia , Radioisótopos de Chumbo/análise , Isótopos de Nitrogênio/análise , Oceano Pacífico , Dinâmica Populacional , Datação Radiométrica/métodos , Fatores de Tempo
3.
J Wildl Dis ; 38(4): 776-83, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12528446

RESUMO

We investigated mortality among nestling eastern bluebirds (Sialia sialis) in Polk and Highlands counties, Florida (USA) in 1999-2001. At least six species of maggots from three families of muscoid flies, Calliphoridae, Sarcophagidae, and Muscidae were found associated with the nestlings. Philornis porteri, the only species of obligate bird parasite collected, was found in the contents of two nests, in the ear canal and the musculature of the jaw of one nestling, and in the abdominal subcutis of another. This is the first record of bluebird parasitism by P. porteri. Although some nestlings were infested by tissue-invading fly larvae antemortem, the role of these maggots in the overall mortality was not clear.


Assuntos
Doenças das Aves/mortalidade , Ectoparasitoses/veterinária , Muscidae , Aves Canoras/parasitologia , Animais , Doenças das Aves/parasitologia , Doenças das Aves/patologia , Ectoparasitoses/mortalidade , Ectoparasitoses/patologia , Florida/epidemiologia , Muscidae/classificação
4.
Science ; 334(6062): 1545-8, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22174250

RESUMO

Humans have more than doubled the amount of reactive nitrogen (Nr) added to the biosphere, yet most of what is known about its accumulation and ecological effects is derived from studies of heavily populated regions. Nitrogen (N) stable isotope ratios ((15)N:(14)N) in dated sediments from 25 remote Northern Hemisphere lakes show a coherent signal of an isotopically distinct source of N to ecosystems beginning in 1895 ± 10 years (±1 standard deviation). Initial shifts in N isotope composition recorded in lake sediments coincide with anthropogenic CO(2) emissions but accelerate with widespread industrial Nr production during the past half century. Although current atmospheric Nr deposition rates in remote regions are relatively low, anthropogenic N has probably influenced watershed N budgets across the Northern Hemisphere for over a century.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA