Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 24(3): 883-894, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29218801

RESUMO

Annual row crops dominate agriculture around the world and have considerable negative environmental impacts, including significant greenhouse gas emissions. Transformative land-use solutions are necessary to mitigate climate change and restore critical ecosystem services. Alley cropping (AC)-the integration of trees with crops-is an agroforestry practice that has been studied as a transformative, multifunctional land-use solution. In the temperate zone, AC has strong potential for climate change mitigation through direct emissions reductions and increases in land-use efficiency via overyielding compared to trees and crops grown separately. In addition, AC provides climate change adaptation potential and ecological benefits by buffering alley crops to weather extremes, diversifying income to hedge financial risk, increasing biodiversity, reducing soil erosion, and improving nutrient- and water-use efficiency. The scope of temperate AC research and application has been largely limited to simple systems that combine one timber tree species with an annual grain. We propose two frontiers in temperate AC that expand this scope and could transform its climate-related benefits: (i) diversification via woody polyculture and (ii) expanded use of tree crops for food and fodder. While AC is ready now for implementation on marginal lands, we discuss key considerations that could enhance the scalability of the two proposed frontiers and catalyze widespread adoption.


Assuntos
Agricultura/métodos , Produtos Agrícolas , Ecossistema , Solo , Agricultura/tendências , Biodiversidade , Mudança Climática , Árvores
2.
3.
PLoS One ; 12(2): e0172861, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28234992

RESUMO

We evaluated the accuracy and precision of the CENTURY soil organic matter model for predicting soil organic carbon (SOC) sequestration under rainfed corn-based cropping systems in the US. This was achieved by inversely modeling long-term SOC data obtained from 10 experimental sites where corn, soybean, or wheat were grown with a range of tillage, fertilization, and organic matter additions. Inverse modeling was accomplished using a surrogate model for CENTURY's SOC dynamics sub-model wherein mass balance and decomposition kinetics equations from CENTURY are coded and solved by using a nonlinear regression routine of a standard statistical software package. With this approach we generated statistics of CENTURY parameters that are associated with the effects of N fertilization and organic amendment on SOC decay, which are not as well quantified as those of tillage, and initial status of SOC. The results showed that the fit between simulated and observed SOC prior to inverse modeling (R2 = 0.41) can be improved to R2 = 0.84 mainly by increasing the rate of SOC decay up to 1.5 fold for the year in which N fertilizer application rates are over 200 kg N ha-1. We also observed positive relationships between C inputs and the rate of SOC decay, indicating that the structure of CENTURY, and therefore model accuracy, could be improved by representing SOC decay as Michaelis-Menten kinetics rather than first-order kinetics. Finally, calibration of initial status of SOC against observed levels allowed us to account for site history, confirming that values should be adjusted to account for soil condition during model initialization. Future research should apply this inverse modeling approach to explore how C input rates and N abundance interact to alter SOC decay rates using C inputs made in various forms over a wider range of rates.


Assuntos
Sequestro de Carbono , Carbono/química , Solo/química , Agricultura/métodos , Algoritmos , Produtos Agrícolas , Fertilizantes , Cinética , Modelos Estatísticos , Método de Monte Carlo , Nitrogênio/química , Dinâmica não Linear , Chuva , Análise de Regressão , Sensibilidade e Especificidade , Software , Glycine max , Triticum , Estados Unidos , Zea mays
4.
Sci Rep ; 7(1): 18062, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273783

RESUMO

Environmental reservoirs are important to infectious disease transmission and persistence, but empirical analyses are relatively few. The natural environment is a reservoir for prions that cause chronic wasting disease (CWD) and influences the risk of transmission to susceptible cervids. Soil is one environmental component demonstrated to affect prion infectivity and persistence. Here we provide the first landscape predictive model for CWD based solely on soil characteristics. We built a boosted regression tree model to predict the probability of the persistent presence of CWD in a region of northern Illinois using CWD surveillance in deer and soils data. We evaluated the outcome for possible pathways by which soil characteristics may increase the probability of CWD transmission via environmental contamination. Soil clay content and pH were the most important predictive soil characteristics of the persistent presence of CWD. The results suggest that exposure to prions in the environment is greater where percent clay is less than 18% and soil pH is greater than 6.6. These characteristics could alter availability of prions immobilized in soil and contribute to the environmental risk factors involved in the epidemiological complexity of CWD infection in natural populations of white-tailed deer.


Assuntos
Argila/química , Modelos Teóricos , Príons/metabolismo , Solo/química , Doença de Emaciação Crônica/metabolismo , Animais , Animais Selvagens , Cervos , Meio Ambiente , Concentração de Íons de Hidrogênio , Illinois
5.
J Environ Qual ; 35(4): 1576-83, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16825478

RESUMO

This work builds on a previous study of long-term tillage trials that found use of no-tillage (NT) practices increased soil organic carbon (SOC) sequestration at Monmouth, IL (silt loam soil) by increasing the soil's protective capacity, but did not alter SOC storage in DeKalb, IL (silty clay loam), where higher clay contents provided a protective capacity not affected by tillage. The least limiting water range (LLWR), a multi-factor index of structural quality, predicted observed soil CO2 efflux patterns. Here we consider whether LLWR can predict sequestration trends at a third site, Perry, IL (silt loam soil) where SOC content is lower and bulk density is higher than in previously considered sites, and determine whether pore size characteristics can help explain the influence use of NT practices has had on SOC sequestration at all three locations. At Perry, LLWR was again related with differences in specific soil organic carbon mineralization rates (RESPsp) (2000-2001). Reduced RESPsp rates explain increases in SOC storage under NT management observed only after 17 yr. Trends in RESPsp suggest use of NT practices only enhance physical protection of SOC where soil bulk density is relatively high (approximately 1.4 g cm(-3)). In those soils (Monmouth and Perry), use of NT management reduced the volume of small macropores (15-150 microm) thought to be important for microbial activity. Physical properties appear to determine whether or not use of NT practices will enhance C storage by increasing physical protection of SOC. By refining the functions used to compute the LLWR and our understanding of the interactions between management, pore structure, and SOC mineralization, we should be able to predict the influence of tillage practices on SOC sequestration.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Monitoramento Ambiental , Compostos Orgânicos/metabolismo , Solo/análise , Carbono/análise , Carbono/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Illinois , Compostos Orgânicos/análise , Fatores de Tempo
6.
PLoS One ; 11(10): e0164209, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27792744

RESUMO

Plant-soil relations may explain why low-external input (LEI) diversified cropping systems are more efficient than their conventional counterparts. This work sought to identify links between management practices, soil quality changes, and root responses in a long-term cropping systems experiment in Iowa where grain yields of 3-year and 4-year LEI rotations have matched or exceeded yield achieved by a 2-year maize (Zea mays L.) and soybean (Glycine max L.) rotation. The 2-year system was conventionally managed and chisel-ploughed, whereas the 3-year and 4-year systems received plant residues and animal manures and were periodically moldboard ploughed. We expected changes in soil quality to be driven by organic matter inputs, and root growth to reflect spatial and temporal fluctuations in soil quality resulting from those additions. We constructed a carbon budget and measured soil quality indicators (SQIs) and rooting characteristics using samples taken from two depths of all crop-phases of each rotation system on multiple dates. Stocks of particulate organic matter carbon (POM-C) and potentially mineralizable nitrogen (PMN) were greater and more evenly distributed in the LEI than conventional systems. Organic C inputs, which were 58% and 36% greater in the 3-year rotation than in the 4-year and 2-year rotations, respectively, did not account for differences in SQI abundance or distribution. Surprisingly, SQIs did not vary with crop-phase or date. All biochemical SQIs were more stratified (p<0.001) in the conventionally-managed soils. While POM-C and PMN in the top 10 cm were similar in all three systems, stocks in the 10-20 cm depth of the conventional system were less than half the size of those found in the LEI systems. This distribution was mirrored by maize root length density, which was also concentrated in the top 10 cm of the conventionally managed plots and evenly distributed between depths in the LEI systems. The plow-down of organic amendments and manures established meaningful differences in SQIs and extended the rhizosphere of the LEI systems. Resulting efficiencies observed in the LEI grain crops indicate that resource distribution as well as abundance is an important component of soil function that helps explain how LEI systems can maintain similar or greater yields with fewer inputs than achieved by their conventional counterparts.


Assuntos
Produção Agrícola/métodos , Raízes de Plantas/fisiologia , Solo , Iowa , Solo/normas , Glycine max/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
7.
Environ Sci Technol ; 42(5): 1458-64, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18441788

RESUMO

The identification and characterization of carbonaceous materials (CMs) that control hydrophobic organic chemical (HOC) sorption is essential to predict the fate and transport of HOCs in soils and sediments. The objectives of this paper are to determine the types of CMs that control HOC sorption in the oxidized and reduced zones of a glacially deposited groundwater sediment in central Illinois, with a special emphasis on the roles of kerogen and black carbon. After collection, the sediments were treated to obtain fractions of the sediment samples enriched in different types of CMs (e.g., humic acid, kerogen, black carbon), and selected fractions were subject to quantitative petrographic analysis. The original sediments and their enrichment fractions were evaluated for their ability to sorb trichloroethene (TCE), a common groundwater pollutant. Isotherm results and mass fractions of CM enrichments were used to calculate sorption contributions of different CMs. The results indicate that CMs in the heavy fractions dominate sorption because of their greater mass. Black carbon mass fractions of total CMs in the reduced sediments were calculated and used to estimate the sorption contribution of these materials. Results indicate that in the reduced sediments, black carbon may sequester as much as 32% of the sorbed TCE mass, butthat kerogen and humin are the dominant sorption environments. Organic carbon normalized sorption coefficients (K(oc)) were compared to literature values. Values for the central Illinois sediments are relatively large and in the range of values determined for materials high in kerogen and humin. This work demonstrates the advantage of using both sequential chemical treatment and petrographic analysis to analyze the sorption contributions of different CMs in natural soils and sediments, and the importance of sorption to natural geopolymers in groundwater sediments not impacted by anthropogenic sources of black carbon.


Assuntos
Carbono/química , Sedimentos Geológicos/química , Compostos Orgânicos/química , Poluentes do Solo/química , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA