Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(47): e2307671120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37956295

RESUMO

The momentum-forbidden dark excitons can have a pivotal role in quantum information processing, Bose-Einstein condensation, and light-energy harvesting. Anatase TiO2 with an indirect band gap is a prototypical platform to study bright to momentum-forbidden dark exciton transition. Here, we examine, by GW plus the real-time Bethe-Salpeter equation combined with the nonadiabatic molecular dynamics (GW + rtBSE-NAMD), the many-body transition that occurs within 100 fs from the optically excited bright to the strongly bound momentum-forbidden dark excitons in anatase TiO2. Comparing with the single-particle picture in which the exciton transition is considered to occur through electron-phonon scattering, within the GW + rtBSE-NAMD framework, the many-body electron-hole Coulomb interaction activates additional exciton relaxation channels to notably accelerate the exciton transition in competition with other radiative and nonradiative processes. The existence of dark excitons and ultrafast bright-dark exciton transitions sheds insights into applications of anatase TiO2 in optoelectronic devices and light-energy harvesting as well as the formation process of dark excitons in semiconductors.

2.
Nano Lett ; 22(21): 8755-8762, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36305523

RESUMO

The excited state species and properties in low-dimensional semiconductors can be completely redefined by electron-lattice coupling or a polaronic effect. Here, by combining ultrafast broadband pump-probe spectroscopy and first-principles GW and Bethe-Salpeter equation calculations, we show semiconducting CrI3 as a prototypical 2D polaronic system with characteristic Jahn-Teller exciton polaron induced by symmetry breaking. A photogenerated electron and hole in CrI3 localize spontaneously in ∼0.9 ps and pair geminately to a Jahn-Teller exciton polaron with elongated Cr-I octahedra, large binding energy, and an unprecedentedly small exciton-exciton annihilation rate constant (∼10-20 cm3 s-1). Coherent phonon dynamics indicates the localization is mainly triggered by the coherent nuclear vibration of the I-Cr-I out-of-plane stretch mode at 128.5 ± 0.1 cm-1. The excited state Jahn-Teller exciton polaron in CrI3 broadens the realm of 2D polaron systems and reveals the decisive role of coupled electron-lattice motion on excited state properties and exciton physics in 2D semiconductors.

4.
Phys Rev Lett ; 126(2): 027402, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512233

RESUMO

We perform femtosecond pump-probe spectroscopy to in situ investigate the ultrafast photocarrier dynamics in bilayer graphene and observe an acceleration of energy relaxation under pressure. In combination with in situ Raman spectroscopy and ab initio molecular dynamics simulations, we reveal that interlayer shear and breathing modes have significant contributions to the faster hot-carrier relaxations by coupling with the in-plane vibration modes under pressure. Our work suggests that further understanding the effect of interlayer interaction on the behaviors of electrons and phonons would be critical to tailor the photocarrier dynamic properties of bilayer graphene.

5.
Nat Commun ; 14(1): 3690, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344475

RESUMO

Polaron is a composite quasiparticle derived from an excess carrier trapped by local lattice distortion, and it has been studied extensively for decades both theoretically and experimentally. However, atomic-scale creation and manipulation of single-polarons in real space have still not been achieved so far, which precludes the atomistic understanding of the properties of polarons as well as their applications. Herein, using scanning tunneling microscopy, we succeeded to create single polarons in a monolayer two-dimensional (2D) semiconductor, CoCl2. Combined with first-principles calculations, two stable polaron configurations, centered at atop and hollow sites, respectively, have been revealed. Remarkably, a series of manipulation progresses - from creation, erasure, to transition - can be accurately implemented on individual polarons. Our results pave the way to understand the physics of polaron at atomic level, and the easy control of single polarons in 2D semiconductor may open the door to 2D polaronics including the data storage.

6.
J Phys Chem Lett ; 13(28): 6455-6461, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35816281

RESUMO

Point defects, during e-h recombination, are a key factor in impacting optoelectronic device performance. Using nonadiabatic molecular dynamics (NAMD), here we investigate the nonradiative recombination of pristine, missing atom defects, including phosphorus vacancies (VP) and phosphorus and boron vacancies (VBP), and atom substitution defects, containing boron on the phosphorus site (BP) and phosphorus on the boron site (PB) of 2D monolayer hexagonal boron phosphide (h-BP). Carrier dynamics in the pristine h-BP and the defect engineered systems reveal that atom substitution defects BP and PB can suppress e-h nonradiative recombination. This is caused by the introduction of several low-frequency phonons in defect states. Electron-phonon coupling between the electronic state and these low-frequency phonons shortens the decoherence time and the nonadiabatic coupling. Also, the atom substitution systems with one defect state introduce fewer carrier recombination channels. Such a mechanism can be extended to other 2D materials with the same structure as h-BP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA