Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 560(7718): 382-386, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089911

RESUMO

Tumour cells evade immune surveillance by upregulating the surface expression of programmed death-ligand 1 (PD-L1), which interacts with programmed death-1 (PD-1) receptor on T cells to elicit the immune checkpoint response1,2. Anti-PD-1 antibodies have shown remarkable promise in treating tumours, including metastatic melanoma2-4. However, the patient response rate is low4,5. A better understanding of PD-L1-mediated immune evasion is needed to predict patient response and improve treatment efficacy. Here we report that metastatic melanomas release extracellular vesicles, mostly in the form of exosomes, that carry PD-L1 on their surface. Stimulation with interferon-γ (IFN-γ) increases the amount of PD-L1 on these vesicles, which suppresses the function of CD8 T cells and facilitates tumour growth. In patients with metastatic melanoma, the level of circulating exosomal PD-L1 positively correlates with that of IFN-γ, and varies during the course of anti-PD-1 therapy. The magnitudes of the increase in circulating exosomal PD-L1 during early stages of treatment, as an indicator of the adaptive response of the tumour cells to T cell reinvigoration, stratifies clinical responders from non-responders. Our study unveils a mechanism by which tumour cells systemically suppress the immune system, and provides a rationale for the application of exosomal PD-L1 as a predictor for anti-PD-1 therapy.


Assuntos
Antígeno B7-H1/imunologia , Exossomos/metabolismo , Tolerância Imunológica/imunologia , Melanoma/imunologia , Receptor de Morte Celular Programada 1/imunologia , Evasão Tumoral/imunologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/sangue , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Tolerância Imunológica/efeitos dos fármacos , Interferon gama/sangue , Interferon gama/imunologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Camundongos Nus , Metástase Neoplásica , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Evasão Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biochem Biophys Res Commun ; 681: 47-54, 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37751634

RESUMO

With the increasing clinical application of dental and orthopedic implants, the problem of peri-implant osteolysis has attracted attention. The inflammatory response and osteoclast differentiation induced by wear particles play an important role in peri-implant bone loss. However, the treatment of peri-implant osteolysis is still lacking. In the present study, we investigated the effect of caffeic acid phenethyl ester (CAPE) on titanium particles induced bone loss in a mouse model. We found that CAPE significantly suppressed titanium particle-induced bone loss in vivo. CAPE treatment decreased ratio of nuclear factor kappa B receptor activator ligand (RANKL)/osteoprotegerin (OPG) and subsequently reduced osteoclastogenesis in the mouse model. In addition, CAPE downregulated the expression and secretion of interleukin-6 (IL-6), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) stimulated by titanium particles in vivo. In summary, we conclude that CAPE prevent the titanium particles-induced bone loss.

3.
J Periodontal Res ; 58(5): 907-918, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37340863

RESUMO

OBJECTIVE: To verify the role of YAP/WNT5A/FZD4 axis in stretch-induced osteogenic differentiation of hPDLCs. BACKGROUND: During orthodontic tooth movement, differentiation of human periodontal ligament cells (hPDLCs) at the tension side of the periodontal ligament mediates new bone formation. WNT5A promotes osteogenesis and its regulator Yes-associated protein (YAP) is responsive to mechanical stimulation in hPDLCs. However, the mechanisms of YAP and WNT5A in alveolar bone remodeling remain unclear. METHODS: Cyclic stretch was applied to hPDLCs to mimic the orthodontic stretching force. Osteogenic differentiation was determined by alkaline phosphatase (ALP) activity, Alizarin Red staining, qRT-PCR and western blotting. To detect activation of YAP and expression of WNT5A and its receptor Frizzled-4 (FZD4), western blotting, immunofluorescence, qRT-PCR and ELISA were performed. Verteporfin, Lats-IN-1, small interfering RNAs and recombinant protein were used to explore the relationship of YAP, WNT5A and FZD4, and the effect of their relationship on stretch-induced osteogenesis of hPDLCs. RESULTS: WNT5A, FZD4 and nuclear localization of YAP were upregulated by cyclic stretch. YAP positively regulated WNT5A and FZD4 expression and osteogenic differentiation of hPDLCs under cyclic stretch by YAP inhibition or activation assay. Knockdown of WNT5A and FZD4 attenuated YAP-induced and stretch-induced osteogenic differentiation. Recombinant WNT5A rescued the suppressed osteogenic differentiation by YAP inhibitor in hPDLCs, whereas knockdown of FZD4 weakened the effect of WNT5A and amplified the suppression. CONCLUSIONS: WNT5A/FZD4 could be positively regulated by YAP and the YAP/WNT5A/FZD4 axis mediated osteogenic differentiation of hPDLCs under cyclic stretch. This study provided further insight into the biological mechanism of orthodontic tooth movement.


Assuntos
Osteogênese , Ligamento Periodontal , Humanos , Células Cultivadas , Diferenciação Celular , Proteínas/metabolismo , Proteína Wnt-5a/metabolismo , Receptores Frizzled/metabolismo
4.
Int J Cancer ; 145(5): 1358-1370, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30785217

RESUMO

Tumor angiogenesis is critical for tumor progression as the new blood vessels supply nutrients and facilitate metastasis. Previous studies indicate tumor associated lymphocytes, including B cells and T cells, contribute to tumor angiogenesis and tumor progression. The present study aims to identify the function of Lymphotoxin-α (LT-α), which is secreted by the activated lymphocytes, in the tumor angiogenesis of head and neck squamous cell carcinoma (HNSCC). The coculture system between HNSCC cell line Cal27 and primary lymphocytes revealed that tumor cells promoted the LT-α secretion in the cocultured lymphocytes. In vitro data further demonstrated that LT-α promoted the proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) by enhancing the PFKFB3-mediated glycolytic flux. Genetic and pharmacological inhibition of PFKFB3 suppressed the enhanced proliferation and migration of HUVECs. We further identified that LT-α induced PFKFB3 expression was dependent on the TNFR/NF-κB signaling pathway. In addition, we proved that PFKFB3 blockade decreased the density of CD31 positive blood vessels in HNSCC xenografts. Finally, the results from the human HNSCC tissue array revealed that the expression of LT-α in HNSCC samples positively correlated with microvessel density, lymphocytes infiltration and endothelial PFKFB3 expression. In conclusion, infiltrated lymphocyte secreted LT-α enhances the glycolysis of ECs in a PFKFB3-dependent manner through the classical NF-κB pathway and promotes the proliferation and migration of ECs, which may contribute to the aberrant angiogenesis in HNSCCs. Our study suggests that PFKFB3 blockade is a promising therapeutic approach for HNSCCs by targeting tumor angiogenesis.


Assuntos
Neoplasias de Cabeça e Pescoço/irrigação sanguínea , Linfotoxina-alfa/metabolismo , Fosfofrutoquinase-2/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/irrigação sanguínea , Animais , Linfócitos B/metabolismo , Ciclo Celular/fisiologia , Técnicas de Cocultura , Feminino , Glicólise , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Linfócitos do Interstício Tumoral , Linfotoxina-alfa/biossíntese , Linfotoxina-alfa/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linfócitos T/metabolismo , Regulação para Cima
5.
J Cell Physiol ; 232(12): 3762-3774, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28181691

RESUMO

Osteogenic differentiation and bone formation are tightly regulated by several factors, including microRNAs (miRNAs). However, miRNA expression patterns and function during mechanical loading-induced osteogenic differentiation of human periodontal ligament cells (PDLCs) remain unclear. Here, we investigated the differential expression of miRNA-195-5p in the periodontal tissues of mice under orthodontic mechanical loading and in primary human PDLCs exposed to a simulated tension strain. The miR-195-5p was observed to be down-regulated and negatively correlated with osteogenic differentiation. Overexpression of miR-195-5p significantly inhibited PDLC differentiation under cyclic tension strain (CTS), whereas the functional inhibition of miR-195-5p yielded an opposite effect. Further experiments confirmed that WNT family member 3A (WNT3A), fibroblast growth factor 2 (FGF2), and bone morphogenetic protein receptor-1A (BMPR1A), proteins important for osteogenic activity and stability, were direct targets of miR-195-5p. Mechanical loading increased the WNT3A, FGF2, and BMPR1A protein levels, while miR-195-5p inhibited WNT3A, FGF2, and BMPR1A protein expression. WNT, FGF, and BMP signaling were involved in osteogenic differentiation of PDLCs under CTS. Further study confirmed that reintroduction of WNT3A and BMPR1A can rescue the inhibition of miR-195-5p on osteogenic differentiation of PDLCs. Our findings are the first to demonstrate that miR-195-5p is a mechanosensitive gene that plays an important role in mechanical loading-induced osteogenic differentiation and bone formation.


Assuntos
Diferenciação Celular , Mecanotransdução Celular , Osteogênese , Ligamento Periodontal/metabolismo , Regiões 3' não Traduzidas , Adolescente , Animais , Sítios de Ligação , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Células Cultivadas , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Animais , Aparelhos Ortodônticos , Ligamento Periodontal/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Estresse Mecânico , Fatores de Tempo , Transfecção , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo , Adulto Jovem
6.
Int Orthod ; 23(1): 100932, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39461035

RESUMO

This case report describes the successful long-term management of a 19-year-old female patient presenting with a skeletal Class II pattern, mild anterior open bite, and mandibular retrognathia. The orthodontic treatment approach involved the distal movement of the maxillary and mandibular dentitions through the extraction of the maxillary second molars and mandibular third molars, combined with the use of extra-alveolar infrazygomatic crest (IZC) and buccal shelf (BS) miniscrews for anchorage. The treatment outcome achieved a stable, well-aligned dentition with ideal intercuspation and an improved facial profile. The 7-year post-treatment records demonstrated a stable occlusion and satisfactory facial aesthetics, confirming the long-term stability of this treatment approach. This case report supports that en-masse distalization of the entire dentition by extracting the upper second molars and lower third molars, coupled with bone miniscrew anchorages, can be a favourable alternative to the conventional premolar extraction approach for the correction of borderline Class II malocclusions.

7.
Cell Signal ; 114: 111015, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38113977

RESUMO

The bone formation (osteogenesis) of human periodontal ligament cells (hPDLCs) under tension stress is essential for alveolar bone remodeling during orthodontic tooth movement (OTM). Deubiquitinating enzymes (DUBs) remove ubiquitin from target proteins, affecting their function and mediating cell survival and differentiation. However, whether and how DUBs regulate hPDLC function under tension force is poorly understood. In this study, we first investigated the expression of DUBs in hPDLCs under cyclic tension stimulation (CTS). Up-regulation of USP12 was observed in hPDLCs and at the tension side of molar teeth in OTM C57BL6 mice models. Knockdown (KD) of USP12 led to enhanced osteogenesis of hPDLCs under CTS. RNA-seq analysis suggested that the unfolded protein response (UPR) was the prevailing biological process in hPDLCs with USP12 KD, indicating that USP12 depletion triggered endoplasmic reticulum (ER) stress. The three major UPR-related signaling branches, namely PERK/eIF2α/ATF4, IRE1α/XBP1s, and ATF6 axis, were activated in hPDLCs with USP12 KD. By utilizing specific inhibitors, we proved that the PERK/eIF2α/ATF4 axis predominantly mediated the enhanced osteogenesis in hPDLCs with USP12 KD under CTS. In summary, our study demonstrates that USP12 serves as a key regulator for CTS-induced osteogenesis in hPDLCs, suggesting that USP12 upregulation serves as an adaptive mechanism for hPDLCs to alleviate ER stress during OTM.


Assuntos
Osteogênese , Ligamento Periodontal , Humanos , Animais , Camundongos , Osteogênese/fisiologia , Endorribonucleases/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Ubiquitina Tiolesterase/metabolismo
8.
Int J Stem Cells ; 16(2): 202-214, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36823975

RESUMO

Background and Objectives: To investigate the role of exosomes from periodontal ligament cells (PDLCs) in bone marrow mesenchymal stem cell (BMSC) migration. Methods and Results: Human PDLCs were applied cyclic tension stretching. Exosomes were extracted from cultured PDLCs by ultracentrifugation, then characterized for their size, morphology and protein markers by NTA, TEM and western blotting. The process that PKH26-labeled exosomes taken up by BMSCs was assessed by confocal microscope. BMSC migration was examined by Transwell assay. Exosomes derived from PDLCs were identified. Cyclic tension stretch application on PDLCs can enhance the migration ability of BMSCs through exosomes. The exosomal miRNA expression profiles of unstretched and stretched PDLCs were tested by miRNA microarray. Four miRNAs (miR-4633-5p, miR-30c-5p, miR-371a-3p and let-7b-3p) were upregulated and six (miR-4689, miR-8485, miR-4655-3p, miR-4672, miR-3180-5p and miR-4476) were downregulated in the exosomes after stretching. Sixteen hub proteins were found in the miRNA-mRNA network. Gene Ontology and KEGG pathway analyses demonstrated that the target genes of differentially expressed exosomal miRNAs closely related to the PI3K pathway and vesicle transmission. Conclusions: The exosomes derived from cyclic tension-stretched PDLCs can promote the migration of BMSCs. Alternation of microRNA profiles provides a basis for further research on the regulatory function of the exosomal miRNAs of PDLCs during orthodontic tooth movement.

9.
Cell Rep ; 42(11): 113352, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37948180

RESUMO

By sorting receptor tyrosine kinases into endolysosomes, the endosomal sorting complexes required for transport (ESCRTs) are thought to attenuate oncogenic signaling in tumor cells. Paradoxically, ESCRT members are upregulated in tumors. Here, we show that disruption of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), a pivotal ESCRT component, inhibited tumor growth by promoting CD8+ T cell infiltration in melanoma and colon cancer mouse models. HRS ablation led to misfolded protein accumulation and triggered endoplasmic reticulum (ER) stress, resulting in the activation of the type I interferon pathway in an inositol-requiring enzyme-1α (IRE1α)/X-box binding protein 1 (XBP1)-dependent manner. HRS was upregulated in tumor cells with high tumor mutational burden (TMB). HRS expression associates with the response to PD-L1/PD-1 blockade therapy in melanoma patients with high TMB tumors. HRS ablation sensitized anti-PD-1 treatment in mouse melanoma models. Our study shows a mechanism by which tumor cells with high TMB evade immune surveillance and suggests HRS as a promising target to improve immunotherapy.


Assuntos
Melanoma , Proteínas Serina-Treonina Quinases , Camundongos , Animais , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Endorribonucleases/metabolismo , Proteostase , Evasão Tumoral , Melanoma/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Interferons/metabolismo
10.
Dev Cell ; 57(3): 329-343.e7, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35085484

RESUMO

Tumor-derived extracellular vesicles (TEVs) suppress the proliferation and cytotoxicity of CD8+ T cells, thereby contributing to tumor immune evasion. Here, we report that the adhesion molecule intercellular adhesion molecule 1 (ICAM-1) co-localizes with programmed death ligand 1 (PD-L1) on the exosomes; both ICAM-1 and PD-L1 are upregulated by interferon-γ. Exosomal ICAM-1 interacts with LFA-1, which is upregulated in activated T cells. Blocking ICAM-1 on TEVs reduces the interaction of TEVs with CD8+ T cells and attenuates PD-L1-mediated suppressive effects of TEVs. During this study, we have established an extracellular vesicle-target cell interaction detection through SorTagging (ETIDS) system to assess the interaction between a TEV ligand and its target cell receptor. Using this system, we demonstrate that the interaction of TEV PD-L1 with programmed cell death 1 (PD-1) on T cells is significantly reduced in the absence of ICAM-1. Our study demonstrates that ICAM-1-LFA-1-mediated adhesion between TEVs and T cells is a prerequisite for exosomal PD-L1-mediated immune suppression.


Assuntos
Exossomos/metabolismo , Terapia de Imunossupressão , Molécula 1 de Adesão Intercelular/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Adesão Celular/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Exossomos/efeitos dos fármacos , Exossomos/ultraestrutura , Interferon gama/farmacologia , Melanoma/patologia , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/metabolismo , Ligação Proteica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
11.
Oncogene ; 40(37): 5590-5599, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34304249

RESUMO

Targeting MAPK pathway using a combination of BRAF and MEK inhibitors is an efficient strategy to treat melanoma harboring BRAF-mutation. The development of acquired resistance is inevitable due to the signaling pathway rewiring. Combining western blotting, immunohistochemistry, and reverse phase protein array (RPPA), we aim to understanding the role of the mTORC1 signaling pathway, a center node of intracellular signaling network, in mediating drug resistance of BRAF-mutant melanoma to the combination of BRAF inhibitor (BRAFi) and MEK inhibitor (MEKi) therapy. The mTORC1 signaling pathway is initially suppressed by BRAFi and MEKi combination in melanoma but rebounds overtime after tumors acquire resistance to the combination therapy (CR) as assayed in cultured cells and PDX models. In vitro experiments showed that a subset of CR melanoma cells was sensitive to mTORC1 inhibition. The mTOR inhibitors, rapamycin and NVP-BEZ235, induced cell cycle arrest and apoptosis in CR cell lines. As a proof-of-principle, we demonstrated that rapamycin and NVP-BEZ235 treatment reduced tumor growth in CR xenograft models. Mechanistically, AKT or ERK contributes to the activation of mTORC1 in CR cells, depending on PTEN status of these cells. Our study reveals that mTOR activation is essential for drug resistance of melanoma to MAPK inhibitors, and provides insight into the rewiring of the signaling networks in CR melanoma.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Serina-Treonina Quinases TOR , Humanos
12.
Biomed Res Int ; 2018: 2174824, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519570

RESUMO

Periodontal remodeling and alveolar bone resorption and formation play essential roles during orthodontic tooth movement (OTM). In the process, human periodontal ligament cells (HPDLCs) sense and respond to orthodontic forces, contributing to the alveolar bone formation. However, the underlying mechanism in this process is not fully elucidated. In the present study, cyclic stress stimulus was applied on HPDLCs to mimic the orthodontic forces during OTM. Our results demonstrated that cyclic stretch promoted the osteogenic differentiation of HPDLCs. Moreover, our data suggested that yes-associated protein (YAP), the Hippo pathway effector, which also involved in mechanical signaling transduction, was activated as we found that the nuclear translocation of YAP was significantly increased in the cyclic stress treated HPDLCs. The mRNA expression of CTGF and CYR61, the target genes of YAP, was also remarkably increased. Furthermore, knockdown of YAP suppressed the cyclic stretch induced osteogenesis in HPDLCs, while overexpression of YAP in HPDLCs enhanced osteogenesis. We also noticed that YAP activities could be suppressed by the ROCK and nonmuscle myosin II inhibitors, Y-27632 and Blebbistatin. The inhibitors also significantly inhibited the cyclic stretch induced osteogenesis in HPDLCs. Finally, in the murine OTM model, our results revealed that YAP was upregulated and nuclearly translocated in the PDLCs at the tension side. In summary, our present study demonstrated that cytoskeleton remodeling induced activation of YAP signaling pathway was crucial for the cyclic stretch-induced osteogenesis of HPDLCs, which might play important roles during OTM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular/fisiologia , Osteogênese/fisiologia , Ligamento Periodontal/metabolismo , Ligamento Periodontal/fisiologia , Fosfoproteínas/metabolismo , Adolescente , Adulto , Amidas/uso terapêutico , Animais , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Reabsorção Óssea/fisiopatologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Criança , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Feminino , Humanos , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Piridinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estresse Mecânico , Técnicas de Movimentação Dentária/métodos , Fatores de Transcrição , Proteínas de Sinalização YAP , Adulto Jovem
13.
J Mol Histol ; 47(5): 455-66, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27456852

RESUMO

Orthodontic tooth movement (OTM) is associated with bone remodeling mediated by orthodontic mechanical loading. Increasing studies reported that Wnt signaling played crucial roles in mechanical stimuli induced bone remodeling. However, little is known about the involvement of Wnt signaling in orthodontic force-induced bone formation during OTM. In virtue of the OTM mice model as we previously reported, where new bone formation was determined by micro-CT and immunoreactivity of osteocalcin and osterix, we explored the activation of Wnt signaling pathway during OTM. Our results proved the nuclei translocation of ß-catenin, suggesting the activation of canonical Wnt signaling pathway in the periodontal ligament cells (PDLCs) near the alveolar bone at the tension site (TS). Moreover, the immunoreactivity of Wnt5a, but not Wnt3a in PDLCs indicated the activation of canonical Wnt pathway might be mediated by Wnt5a, but not Wnt3a as in most cases. The co-location of Wnt5a and ß-catenin that was evidenced by double labeling immunofluorescence staining further supported the hypothesis. In addition, the high expression of FZD4 and LRP5 in PDLCs at TS of periodontium suggested that the activation of Wnt signaling pathway was mediated by these receptors. The negligible expression of ROR2 also indicated that canonical but not non-canonical Wnt signaling pathway was activated by Wnt5a, since previous studies demonstrated that the activation of canonical/non-canonical Wnt signaling pathway was largely dependent on the receptors. In summary, we here reported that Wnt5a mediated activation of canonical Wnt signaling pathway might contribute to the orthodontic force induced bone remodeling.


Assuntos
Remodelação Óssea , Osteogênese , Dente/crescimento & desenvolvimento , Dente/metabolismo , Via de Sinalização Wnt , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Animais , Biomarcadores , Receptores Frizzled/metabolismo , Imuno-Histoquímica , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Fenômenos Mecânicos , Camundongos , Modelos Animais , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
14.
ACS Biomater Sci Eng ; 2(5): 789-797, 2016 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-33440576

RESUMO

Gold nanorods (AuNRs) with unique plasmonic properties in the near-infrared region have promising biomedical applications but suffer from poor in vivo clearance because of the large size. In this study, small AuNRs with a diameter of 7 nm (designated as sAuNRs) are found to have low toxicity and high clearance rates in vivo. Compared to common AuNRs with a diameter of 14 nm (designated as bAuNRs), sAuNRs exhibit similar surface plasmon resonance bands and photothermal efficiency as bAuNRs but have lower cytotoxicity as well as higher cell uptake. The in vivo biodistribution study indicates that only 0.68% of the intravenously injected sAuNRs remain in the body after 30 days, but the residual amount in the body after injection of bAuNRs is as high as 12.3%. The results demonstrate that the smaller AuNRs having lower toxicity and increased clearance in vivo have large clinical potential.

15.
Biomaterials ; 78: 27-39, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26646625

RESUMO

Nanomaterials-mediated photothermal therapy (PTT) often suffers from the fundamental cellular defense mechanism of heat shock response which leads to therapeutic resistance of cancer cells and reduces the therapeutic efficacy. Herein, a gold nanorods (GNRs)-siRNA platform with gene silencing capability is produced to improve the PTT efficiency. After surface modification, the GNRs show the ability to deliver siRNA oligos targeting BAG3 which is an efficient gene to block the heat-shock response. The synthesized GNRs-siRNA nanoplex exhibits excellent ability in the delivery of siRNA into cancer cells with high silencing efficiency which is even better than that of commercial Lipofectamine 2000. The in vitro and in vivo studies demonstrate the ability of the GNRs-siRNA nanoplex to sensitize the cancer cells to PTT under moderate laser irradiation by down-regulating the increased BAG3 expression and enhancing apoptosis. The GNRs-siRNA mediated PTT has large potential in clinical cancer therapy due to the elimination of therapeutic resistance and enhanced photothermal therapeutic efficacy by means of gene silencing. It also suggests an efficient platform for gene delivery and controllable gene therapy.


Assuntos
Inativação Gênica , Ouro/química , Hipertermia Induzida , Nanotubos , Fototerapia , RNA Interferente Pequeno/química , Linhagem Celular Tumoral , Humanos
16.
Photomed Laser Surg ; 33(5): 258-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25954827

RESUMO

OBJECTIVE: Photodynamic therapy (PDT) triggers various cellular responses and induces cell death via necrosis and/or apoptosis. This study evaluated the feasibility of using O2 and Ca(2+) fluxes as indicators of apoptosis induced by rose bengal (RB)-mediated PDT in human oral squamous carcinoma cells (Cal27 cells). METHODS: Intracellular reactive oxygen species (ROS) generation was assessed by the dichloro-dihydro-fluorescein diacetate (DCFH-DA) method. Real-time O2 and Ca(2+) flux measurements were performed using the noninvasive micro-test technique (NMT). Apoptosis of the PDT-treated cells was confirmed by 4'6-diamidino-2-phenylindole-dilactate staining. The activation of apoptosis-related molecules was examined using Western blot. We assayed the effects of the fluctuation of O2 and Ca(2+) flux in response to PDT and the apoptotic mechanism, by which ROS, O2, and Ca(2+) synergistically may trigger apoptosis in PDT-treated cells. RESULTS: Real-time O2 and Ca(2+) flux measurements revealed that these indicators were involved in the timely regulation of apoptosis in the PDT-treated cells and were activated 2 h after PDT treatment. RB-mediated PDT significantly elicited the generation of ROS by approximately threefold, which was critical for PDT-induced apoptosis. Cytochrome c and cleaved caspase-3, caspase-9 and poly ADP ribose polymerase (PARP) were overexpressed, and the data provided evidence that 2 h was considered to be the key observation time in RB-mediated PDT-induced apoptosis in Cal27 cells. CONCLUSIONS: Our collective results indicated that the effects of O2 and Ca(2+) fluxes may act as a real-time biomonitoring system of apoptosis in the RB-PDT-treated cells. Also, RB-mediated PDT can be a potential and effective therapeutic modality in oral squamous cell carcinoma.


Assuntos
Apoptose/efeitos da radiação , Carcinoma de Células Escamosas/metabolismo , Corantes Fluorescentes/farmacologia , Neoplasias Bucais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rosa Bengala/farmacologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/radioterapia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Neoplasias Bucais/patologia , Neoplasias Bucais/radioterapia
17.
Biomaterials ; 35(6): 1954-66, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24331707

RESUMO

Gold nanorods (GNRs) conjugated with rose bengal (RB) molecules exhibit efficient singlet oxygen generation when illuminated by 532 nm green light and high photothermal efficiency under 810 nm near-infrared (NIR) irradiation. In vitro experiments show that reactive oxygen species generated by green light and hyperthermia produced by NIR light constitute two different mechanisms for cancer cell death. The RB-GNRs also exhibit improved photodynamic efficacy by enhancing the uptake of RB by cancer cells. In vivo experiments are conducted on hamster cheek pouches to resemble the human oral cancer conditions more accurately to assess the therapeutic effectiveness. Compared to the single photodynamic therapy (PDT) or photothermal therapy (PTT), the RB-GNRs with combined PDT-PTT capabilities provide better therapeutic effects against oral cancer and have large potential in cancer treatment.


Assuntos
Ouro/química , Hipertermia Induzida/métodos , Neoplasias Bucais/terapia , Nanotubos/química , Fotoquimioterapia/métodos , Animais , Apoptose , Linhagem Celular Tumoral , Cricetinae , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Mesocricetus , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Biosens Bioelectron ; 54: 128-34, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24269754

RESUMO

Surface-enhanced Raman scattering (SERS) fingerprints of individual molecules offer the possibility of multiplexing as well as cancer screening. A highly sensitive, noninvasive, and rapid cancer screening platform encompassing exfoliative cytology and paper-based SERS technology is described. The SERS substrate which consists of plasmonic gold nanorods (GNRs) adsorbed on a piece of filter paper forms the flexible and three-dimensional heterogeneous scaffold for cancer screening. Different and reproducible SERS spectra are obtained from normal and cancerous cells due to specific biomolecular changes in cancerous cells. A diagnostic algorithm based on the ratio of the spectra values is adopted to distinguish between cells exfoliated from 20 normal and cancerous tissues, and a high sensitivity of 100% and specificity of 100% are achieved by I1600/1440 (peak ratio of signals at 1600-1440 cm(-1)) and I1440/1340 (1440-1340 cm(-1)), which is better than I1600/1340 (1600-1340 cm(-1)) with a sensitivity of 70% and specificity of 60%. The combination of exfoliative cytology and paper-based plasmonic technology enables highly sensitive, rapid, and non-invasive cancer screening and has large clinical potential.


Assuntos
Técnicas Biossensoriais/instrumentação , Neoplasias Bucais/diagnóstico , Análise Espectral Raman/instrumentação , Técnicas Biossensoriais/economia , Linhagem Celular Tumoral , Detecção Precoce de Câncer/economia , Detecção Precoce de Câncer/instrumentação , Desenho de Equipamento , Ouro/química , Humanos , Nanotubos/química , Papel , Sensibilidade e Especificidade
19.
Biomaterials ; 34(17): 4274-83, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23489924

RESUMO

Early detection of cancer often requires time consuming protocols and expensive instrumentation. To address these limitations, a Rose Bengal conjugated gold nanorod (RB-GNR) platform is developed for optical detection of cancer cells. The GNRs are modified by poly(allylamine hydrochloride) and conjugated with RB molecules to produce RB-GNRs which exhibit strong optical absorption in the near-infrared (NIR) region, good stability in aqueous solution, low cytotoxicity, and high specificity to oral cancer cells. The label-free sensing assay utilizes RB-GNRs as the sensing probe and by monitoring the aggregation-induced red-shift in the NIR absorption wavelength, specific and quantitative analysis of the oral cancer cell lysate is accomplished down to a detection limit of 2000 cells/mL. By employing the RB-GNRs as an imaging probe, an imaging assay is established on a home-made NIR absorption imaging system. Based on the NIR absorption by the RB-GNRs specifically conjugated with the oral cancer cells, multi-channel, rapid and quantitative detection of oral cancer cells is demonstrated. The high sensitivity and specificity of the RB-GNR platform as demonstrated by the two complementary assays provide non-invasive optical diagnostics of oral cancer cells enabling convenient screening and monitoring.


Assuntos
Diagnóstico por Imagem/métodos , Ouro , Neoplasias Bucais/diagnóstico , Nanotubos/química , Imagem Óptica/métodos , Rosa Bengala , Linhagem Celular Tumoral , Feminino , Humanos , Hidrodinâmica , Lactente , Masculino , Nanotubos/ultraestrutura , Poliaminas , Rosa Bengala/química , Sensibilidade e Especificidade , Espectroscopia de Luz Próxima ao Infravermelho , Eletricidade Estática , Ressonância de Plasmônio de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA