Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Circ Res ; 127(8): 1074-1090, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32673515

RESUMO

RATIONALE: Atherosclerosis preferentially occurs at specific sites of the vasculature where endothelial cells (ECs) are exposed to disturbed blood flow. Translocation of integrin α5 to lipid rafts promotes integrin activation and ligation, which is critical for oscillatory shear stress (OSS)-induced EC activation. However, the underlying mechanism of OSS promoted integrin α5 lipid raft translocation has remained largely unknown. OBJECTIVE: The objective of this study was to specify the mechanotransduction mechanism of OSS-induced integrin α5 translocation and subsequent EC activation. METHODS AND RESULTS: Mass spectrometry studies identified endothelial ANXA2 (annexin A2) as a potential carrier allowing integrin α5ß1 to traffic in response to OSS. Interference by siRNA of AnxA2 in ECs greatly decreased OSS-induced integrin α5ß1 translocation to lipid rafts, EC activation, and monocyte adhesion. Pharmacological and genetic inhibition of PTP1B (protein tyrosine phosphatase 1B) blunted OSS-induced integrin α5ß1 activation, which is dependent on Piezo1-mediated calcium influx in ECs. Furthermore, ANXA2 was identified as a direct substrate of activated PTP1B by mass spectrometry. Using bioluminescence resonance energy transfer assay, PTP1B-dephosphorylated ANXA2 at Y24 was found to lead to conformational freedom of the C-terminal core domain from the N-terminal domain of ANXA2. Immunoprecipitation assays showed that this unmasked ANXA2-C-terminal core domain specifically binds to an integrin α5 nonconserved cytoplasmic domain but not ß1. Importantly, ectopic lentiviral overexpression of an ANXA2Y24F mutant increased and shRNA against Ptp1B decreased integrin α5ß1 ligation, inflammatory signaling, and progression of plaques at atheroprone sites in apolipoprotein E (ApoE)-/- mice. However, the antiatherosclerotic effect of Ptp1B shRNA was abolished in AnxA2-/-ApoE-/- mice. CONCLUSIONS: Our data elucidate a novel endothelial mechanotransduction molecular mechanism linking atheroprone flow and activation of integrin α5ß1, thereby identifying a class of potential therapeutic targets for atherosclerosis. Graphic Abstract: An graphic abstract is available for this article.


Assuntos
Anexina A2/metabolismo , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Integrina alfa5/metabolismo , Integrina alfa5beta1/metabolismo , Microdomínios da Membrana/metabolismo , Animais , Anexina A2/genética , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Integrina alfa5/genética , Integrina alfa5beta1/genética , Integrinas , Canais Iônicos/metabolismo , Masculino , Mecanotransdução Celular , Microdomínios da Membrana/patologia , Camundongos Knockout para ApoE , Placa Aterosclerótica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Fluxo Sanguíneo Regional , Estresse Mecânico , Células THP-1
2.
Sheng Li Xue Bao ; 74(2): 201-208, 2022 Apr 25.
Artigo em Zh | MEDLINE | ID: mdl-35503067

RESUMO

The shivering and nonshivering thermogenesis in skeletal muscles is important for maintaining body temperature in a cold environment. In addition to nervous-humoral regulation, adipose tissue was demonstrated to directly respond to cold in a cell-autonomous manner to produce heat. However, whether skeletal muscle can directly respond to low temperature in an autoregulatory manner is unknown. Transient receptor potential (TRP) channels TRPM8 and TRPA1 are two important cold sensors. In the current study, we found TRPM8 was expressed in mouse skeletal muscle tissue and C2C12 myotubes by RT-PCR. After exposure to 33 °C for 6 h, the gene expression pattern of C2C12 myotubes was significantly changed which was evidenced by RNA-sequencing. KEGG-Pathway enrichment analysis of these differentially expressed genes showed that low temperature changed several important signaling pathways, such as IL-17, TNFα, MAPK, FoxO, Hedgehog, Hippo, Toll-like receptor, Notch, and Wnt signaling pathways. Protein-protein interaction network analysis revealed that IL-6 gene was a key gene which was directly affected by low temperature in skeletal muscle cells. In addition, both mRNA and protein levels of IL-6 were increased by 33 °C exposure in C2C12 myotubes. In conclusion, our findings demonstrated that skeletal muscle cells could directly respond to low temperature, characterized by upregulated expression of IL-6 in skeletal muscle cells.


Assuntos
Temperatura Baixa , Interleucina-6 , Animais , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/fisiologia , Temperatura
3.
Am J Physiol Gastrointest Liver Physiol ; 316(4): G527-G538, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30789748

RESUMO

Hepatic steatosis is the beginning phase of nonalcoholic fatty liver disease, and hyperhomocysteinemia (HHcy) is a significant risk factor. Soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) and other epoxy fatty acids, attenuating their cardiovascular protective effects. However, the involvement of sEH in HHcy-induced hepatic steatosis is unknown. The current study aimed to explore the role of sEH in HHcy-induced lipid disorder. We fed 6-wk-old male mice a chow diet or 2% (wt/wt) high-metnionine diet for 8 wk to establish the HHcy model. A high level of homocysteine induced lipid accumulation in vivo and in vitro, which was concomitant with the increased activity and expression of sEH. Treatment with a highly selective specific sEH inhibitor (0.8 mg·kg-1·day-1 for the animal model and 1 µM for cells) prevented HHcy-induced lipid accumulation in vivo and in vitro. Inhibition of sEH activated the peroxisome proliferator-activated receptor-α (PPAR-α), as evidenced by elevated ß-oxidation of fatty acids and the expression of PPAR-α target genes in HHcy-induced hepatic steatosis. In primary cultured hepatocytes, the effect of sEH inhibition on PPAR-α activation was further confirmed by a marked increase in PPAR-response element luciferase activity, which was reversed by knock down of PPAR-α. Of note, 11,12-EET ligand dependently activated PPAR-α. Thus increased sEH activity is a key determinant in the pathogenesis of HHcy-induced hepatic steatosis, and sEH inhibition could be an effective treatment for HHcy-induced hepatic steatosis. NEW & NOTEWORTHY In the current study, we demonstrated that upregulation of soluble epoxide hydrolase (sEH) is involved in the hyperhomocysteinemia (HHcy)-caused hepatic steatosis in an HHcy mouse model and in murine primary hepatocytes. Improving hepatic steatosis in HHcy mice by pharmacological inhibition of sEH to activate peroxisome proliferator-activated receptor-α was ligand dependent, and sEH could be a potential therapeutic target for the treatment of nonalcoholic fatty liver disease.


Assuntos
Inibidores Enzimáticos/farmacocinética , Epóxido Hidrolases , Ácidos Graxos/metabolismo , Fígado Gorduroso , Hiper-Homocisteinemia , PPAR alfa/metabolismo , Animais , Modelos Animais de Doenças , Descoberta de Drogas , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/enzimologia , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
4.
Am J Physiol Endocrinol Metab ; 312(4): E357-E367, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28270440

RESUMO

Liver X receptors, including LXRα and LXRß, are known to be master regulators of liver lipid metabolism. Activation of LXRα increases hepatic lipid storage in lipid droplets (LDs). 17ß-Hydroxysteroid dehydrogenase-13 (17ß-HSD13), a recently identified liver-specific LD-associated protein, has been reported to be involved in the development of nonalcoholic fatty liver disease. However, little is known about its transcriptional regulation. In the present study, we aimed at determining whether 17ß-HSD13 gene transcription is controlled by LXRs. We found that treatment with T0901317, a nonspecific LXR agonist, increased both 17ß-HSD13 mRNA and protein levels in cultured hepatocytes. It also significantly upregulated hepatic 17ß-HSD13 expression in wild-type (WT) and LXRß-/- mice but not in LXRα-/- mice. Basal expression of 17ß-HSD13 in the livers of LXRα-/- mice was lower than that in the livers of WT and LXRß-/- mice. Moreover, induction of hepatic 17ß-HSD13 expression by T0901317 was almost completely abolished in SREBP-1c-/- mice. Bioinformatics analysis revealed a consensus sterol regulatory element (SRE)-binding site in the promoter region of the 17ß-HSD13 gene. A 17ß-HSD13 gene promoter-driven luciferase reporter and ChIP assays further confirmed that the 17ß-HSD13 gene was under direct control of SREBP-1c. Collectively, these findings demonstrate that LXRα activation induces 17ß-HSD13 expression in a SREBP-1c-dependent manner. 17ß-HSD13 may be involved in the development of LXRα-mediated fatty liver.


Assuntos
17-Hidroxiesteroide Desidrogenases/metabolismo , Hepatócitos/metabolismo , Receptores X do Fígado/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , 17-Hidroxiesteroide Desidrogenases/genética , Animais , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hidrocarbonetos Fluorados/farmacologia , Gotículas Lipídicas/metabolismo , Receptores X do Fígado/agonistas , Receptores X do Fígado/genética , Camundongos , Camundongos Knockout , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Sulfonamidas/farmacologia , Ativação Transcricional
5.
Hepatology ; 64(1): 92-105, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26928949

RESUMO

UNLABELLED: Hyperhomocysteinemia (HHcy) is associated with liver diseases such as fatty liver and hepatic fibrosis; however, the underlying mechanism is still largely unknown. The current study aimed to explore the signaling pathway involved in HHcy-induced hepatic steatosis (HS). C57BL/6 mice were fed a high-methionine diet (HMD) for 4 and 8 weeks to establish the HHcy mouse model. Compared to a chow diet, the HMD induced hepatic steatosis and elevated hepatic expression of CD36, a fatty acid transport protein. The increased CD36 expression was associated with activation of the aryl hydrocarbon receptor (AHR). In primary cultured hepatocytes, high levels of homocysteine (Hcy) treatment up-regulated CD36 and increased subsequent lipid uptake; both were significantly attenuated by small interfering RNA (siRNA) knockdown of CD36 and AHR. Chromatin immunoprecipitation assay revealed that Hcy promoted binding of AHR to the CD36 promoter, and transient transfection assay demonstrated markedly increased activity of the AHR response element by Hcy, which was ligand dependent. Mass spectrometry revealed significantly increased hepatic content of lipoxin A4 (LXA4 ), a metabolite of arachidonic acid, in HMD-fed mice. Furthermore, overexpression of 15-oxoprostaglandin 13-reductase 1, a LXA4 inactivation enzyme, inhibited Hcy-induced AHR activation, lipid uptake, and lipid accumulation. Moreover, LXA4 -induced up-regulation of CD36 and lipid uptake was inhibited by AHR siRNA in vitro in hepatocytes. Finally, treatment with an AHR antagonist reversed HHcy-induced lipid accumulation by inhibiting the AHR-CD36 pathway in mice. CONCLUSION: HHcy activates the AHR-CD36 pathway by increasing hepatic LXA4 content, which results in hepatic steatosis. (Hepatology 2016;64:92-105).


Assuntos
Antígenos CD36/metabolismo , Fígado Gorduroso/metabolismo , Hiper-Homocisteinemia/metabolismo , Metabolismo dos Lipídeos , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Hepatócitos/metabolismo , Lipoxinas/metabolismo , Fígado/metabolismo , Masculino , Metionina , Camundongos Endogâmicos C57BL
6.
FASEB J ; 30(10): 3388-3399, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27342766

RESUMO

Inflammatory factors secreted by microglia play an important role in focal ischemic stroke. The mammalian target of rapamycin (mTOR) pathway is a known regulator of immune responses, but the role that mTORC1 signaling plays in poststroke neuroinflammation is not clear. To explore the relationship between microglial action in the mTORC1 pathway and the impact on stroke, we administered the mTORC1 inhibitors sirolimus and everolimus to mice. Presumably, disrupting the mTORC1 pathway after focal ischemic stroke should clarify the subsequent activity of microglia. For that purpose, we generated mice deficient in the regulatory associated protein of mTOR (Raptor) in microglia, whose mTORC1 signaling was blocked, by crossing Raptor loxed (Raptorflox/flox) mice with CX3CR1CreER mice, which express Cre recombinase under the control of the CX3C chemokine receptor 1 promoter. mTORC1 blockade reduced lesion size, improved motor function, dramatically decreased production of proinflammatory cytokines and chemokines, and reduced the number of M1 type microglia. Thus, mTORC1 blockade apparently attenuated behavioral deficits and poststroke inflammation after middle cerebral artery occlusion by preventing microglia polarization toward the M1 type.-Li, D., Wang, C., Yao, Y., Chen, L., Liu, G., Zhang, R., Liu, Q., Shi, F.-D., Hao, J. mTORC1 pathway disruption ameliorates brain inflammation following stroke via a shift in microglia phenotype from M1 type to M2 type.


Assuntos
Encefalite/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Comportamento Animal/fisiologia , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Transgênicos , Complexos Multiproteicos/genética , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/metabolismo , Serina-Treonina Quinases TOR/genética
7.
Proc Natl Acad Sci U S A ; 111(31): 11437-42, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25028495

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is characterized by a massive accumulation of lipid droplets (LDs). The aim of this study was to determine the function of 17ß-hydroxysteroid dehydrogenase-13 (17ß-HSD13), one of our newly identified LD-associated proteins in human subjects with normal liver histology and simple steatosis, in NAFLD development. LDs were isolated from 21 human liver biopsies, including 9 cases with normal liver histology (group 1) and 12 cases with simple steatosis (group 2). A complete set of LD-associated proteins from three liver samples of group 1 or group 2 were determined by 2D LC-MS/MS. By comparing the LD-associated protein profiles between subjects with or without NAFLD, 54 up-regulated and 35 down-regulated LD-associated proteins were found in NAFLD patients. Among them, 17ß-HSD13 represents a previously unidentified LD-associated protein with a significant up-regulation in NAFLD. Because the 17ß-HSD family plays an important role in lipid metabolism, 17ß-HSD13 was selected for validating the proteomic findings and exploring its role in the pathogenesis of NAFLD. Increased hepatic 17ß-HSD13 and its LD surface location were confirmed in db/db (diabetic) and high-fat diet-fed mice. Adenovirus-mediated hepatic overexpression of human 17ß-HSD13 induced a fatty liver phenotype in C57BL/6 mice, with a significant increase in mature sterol regulatory element-binding protein 1 and fatty acid synthase levels. The present study reports an extensive set of human liver LD proteins and an array of proteins differentially expressed in human NAFLD. We also identified 17ß-HSD13 as a pathogenic protein in the development of NAFLD.


Assuntos
17-Hidroxiesteroide Desidrogenases/metabolismo , Fígado Gorduroso/enzimologia , Fígado Gorduroso/patologia , Proteômica/métodos , Animais , Células Cultivadas , Dieta Hiperlipídica , Hepatócitos/enzimologia , Hepatócitos/patologia , Humanos , Lipídeos/química , Lipogênese , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Proteoma/metabolismo , Reprodutibilidade dos Testes , Regulação para Cima
8.
Biochim Biophys Acta ; 1851(10): 1317-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26170200

RESUMO

Arachidonic acid (AA) metabolism plays an important role in vascular homeostasis. We reported that DNA hypomethylation of EPHX2 induced a pro-inflammatory response in vascular endothelial cells (ECs). However, the change in the whole AA metabolism by DNA methylation is still unknown. Using a metabolomic approach, we investigated the effect of DNA methylation on the balance of AA metabolism and the underlying mechanism. ECs were treated with a DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-AZA), and AA metabolic profiles were analyzed. Levels of prostaglandin D2 (PGD2) and thromboxane B2 (TXB2), metabolites in the cyclooxygenase (COX) pathway, were significantly increased by 5-AZA treatment in ECs resulting from the induction of PGD2 synthase (PTGDS) and thromboxane A synthase 1 (TBXAS1) expression by DNA hypomethylation. This phenomenon was also observed in liver and kidney cell lines, indicating a universal mechanism. Pathophysiologically, homocysteine, known to cause DNA demethylation, induced a similar pattern of the change of AA metabolism. Furthermore, 5-AZA activated ECs, as evidenced by the upregulation of adhesion molecules. Indomethacin, a COX inhibitor, reversed the effects of 5-AZA on the levels of PGD2 and TXB2, EC activation and monocyte adhesion. In vivo, the plasma levels of PGD2 and TXB2 and the expression of In vivo PTGDS and TBXAS1 as well as adhesion molecules were increased in the aorta of the mice injected with 5-AZA. In conclusion, using a metabolomic approach, our study uncovered that DNA demethylation increased AA metabolites PGD2 and TXB2 by upregulating the expression of the corresponding enzymes, which might contribute to the DNA hypomethylation-induced endothelial activation.


Assuntos
Ácidos Araquidônicos/metabolismo , Metilação de DNA/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Metilação de DNA/efeitos dos fármacos , Decitabina , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Oxirredutases Intramoleculares/biossíntese , Rim/citologia , Rim/enzimologia , Lipocalinas/biossíntese , Fígado/citologia , Fígado/enzimologia , Masculino , Metabolômica , Camundongos , Tromboxano-A Sintase/biossíntese
9.
Hepatology ; 59(5): 1779-90, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24806753

RESUMO

UNLABELLED: FAM3A belongs to a novel cytokine-like gene family, and its physiological role remains largely unknown. In our study, we found a marked reduction of FAM3A expression in the livers of db/db and high-fat diet (HFD)-induced diabetic mice. Hepatic overexpression of FAM3A markedly attenuated hyperglycemia, insulin resistance, and fatty liver with increased Akt (pAkt) signaling and repressed gluconeogenesis and lipogenesis in the livers of those mice. In contrast, small interfering RNA (siRNA)-mediated knockdown of hepatic FAM3A resulted in hyperglycemia with reduced pAkt levels and increased gluconeogenesis and lipogenesis in the livers of C57BL/6 mice. In vitro study revealed that FAM3A was mainly localized in the mitochondria, where it increases adenosine triphosphate (ATP) production and secretion in cultured hepatocytes. FAM3A activated Akt through the p110α catalytic subunit of PI3K in an insulin-independent manner. Blockade of P2 ATP receptors or downstream phospholipase C (PLC) and IP3R and removal of medium calcium all significantly reduced FAM3A-induced increase in cytosolic free Ca(2+) levels and attenuated FAM3A-mediated PI3K/Akt activation. Moreover, FAM3A-induced Akt activation was completely abolished by the inhibition of calmodulin (CaM). CONCLUSION: FAM3A plays crucial roles in the regulation of glucose and lipid metabolism in the liver, where it activates the PI3K-Akt signaling pathway by way of a Ca(2+) /CaM-dependent mechanism. Up-regulating hepatic FAM3A expression may represent an attractive means for the treatment of insulin resistance, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD).


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/fisiologia , Citocinas/fisiologia , Gluconeogênese , Lipogênese , Fígado/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Diabetes Mellitus Tipo 2/complicações , Dieta Hiperlipídica , Fígado Gorduroso/etiologia , Células Hep G2 , Humanos , Hiperglicemia/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Purinérgicos P2/fisiologia
10.
Diabetologia ; 57(11): 2393-404, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25120095

RESUMO

AIMS/HYPOTHESIS: Inflammatory factors secreted by macrophages play an important role in obesity-related insulin resistance. Being at the crossroads of a nutrient-hormonal signalling network, the mammalian target of rapamycin complex 1 (mTORC1) controls important functions in the regulation of energy balance and peripheral metabolism. However, the role of macrophage mTORC1 in insulin resistance is still unclear. In the current study, we investigated the physiological role of macrophage mTORC1 in regulating inflammation and insulin sensitivity. METHODS: We generated mice deficient in the regulatory associated protein of mTOR (Raptor) in macrophages, by crossing Raptor (also known as Rptor) floxed mice (Raptor (flox/flox)) with mice expressing Cre recombinase under the control of the Lysm-Cre promoter (Mac-Raptor (KO)). We fed mice chow or high-fat diet (HFD) and assessed insulin sensitivity in liver, muscle and adipose tissue. Subsequently, we measured inflammatory gene expression in liver and adipose tissue and investigated the role of Raptor deficiency in the regulation of inflammatory responses in peritoneal macrophages from HFD-fed mice or in palmitic acid-stimulated bone marrow-derived macrophages (BMDMs). RESULTS: Mac-Raptor (KO) mice fed HFD had improved systemic insulin sensitivity compared with Raptor (flox/flox) mice. Macrophage Raptor deficiency reduced inflammatory gene expression in liver and adipose tissue, fatty liver and adipose tissue macrophage content in response to HFD. In peritoneal macrophages from mice fed with an HFD for 12 weeks, macrophage Raptor deficiency decreased inflammatory gene expression, through attenuation of the inactivation of Akt and subsequent inhibition of the inositol-requiring element 1α/clun NH2-terminal kinase-nuclear factor kappa-light-chain-enhancer of activated B cells (IRE1α/JNK/NFκB) pathways. Similarly, mTOR inhibition as a result of Raptor deficiency or rapamycin treatment decreased palmitic acid-induced inflammatory gene expression in BMDMs in vitro. CONCLUSIONS/INTERPRETATION: The disruption of mTORC1 signalling in macrophages protects mice against inflammation and insulin resistance potentially by inhibiting HFD- and palmitic acid-induced IRE1α/JNK/NFκB pathway activation.


Assuntos
Resistência à Insulina/fisiologia , Macrófagos/metabolismo , Complexos Multiproteicos/metabolismo , Obesidade/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Obesos , Complexos Multiproteicos/genética , Obesidade/genética , Reação em Cadeia da Polimerase em Tempo Real , Serina-Treonina Quinases TOR/genética
11.
Biochim Biophys Acta ; 1830(8): 4160-70, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23562554

RESUMO

BACKGROUND: To date, the biological function of FAM3A, the first member of FAM3 gene family, remains unknown. We aimed to investigate whether the expression of FAM3A in liver cells is regulated by peroxisome proliferator-activated receptors (PPARs). METHODS AND RESULTS: The transcriptional activity of human and mouse FAM3A gene promoters was determined by luciferase reporter assay system. PPARγ agonist rosiglitazone induced FAM3A expression in primary cultured mouse hepatocytes and human HepG2 cells. PPARγ antagonism blocked rosiglitazone-induced FAM3A expression, whereas PPARγ overexpression stimulated FAM3A expression in HepG2 cells. In contrast, PPARα agonist fenofibrate or PPARß agonist GW0742 failed to affect FAM3A expression in HepG2 cells. The transcriptional activities of human and mouse FAM3A promoters were markedly stimulated by PPARγ activation, but not by PPARα and PPARß activation. Chromatin immunoprecipitation (ChIP) assay revealed a direct binding of PPARγ to the putative peroxisome proliferator response element (PPRE) located at -1258/-1246 in the human FAM3A promoter. Site-directed mutagenesis of this PPRE-like motif abolished PPARγ's stimulatory effect on the transcriptional activity of human FAM3A promoter. In vivo, oral rosiglitazone treatment upregulated FAM3A expression in the livers of C57BL/6 mice and db/db mice. Moreover, upregulation of FAM3A by PPARγ activation was correlated with increased level of phosphorylated Akt (pAkt) in liver cells. CONCLUSIONS: FAM3A as a novel target gene of PPARγ. Upregulation of FAM3A by PPARγ activation is correlated with increased pAkt level in liver cells. GENERAL SIGNIFICANCE: Upregulation of FAM3A might contribute to PPARγ's metabolic effects in the liver.


Assuntos
Citocinas/genética , PPAR gama/fisiologia , Animais , Sequência de Bases , Células Cultivadas , Células Hep G2 , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Palmitatos/farmacologia , Regiões Promotoras Genéticas , Rosiglitazona , Tiazolidinedionas/farmacologia
12.
Hepatology ; 58(2): 617-28, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23348573

RESUMO

UNLABELLED: The protein, thyroid hormone-responsive SPOT 14 homolog (Thrsp), has been reported to be a lipogenic gene in cultured hepatocytes, implicating an important role of Thrsp in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Thrsp expression is known to be regulated by a variety of transcription factors, including thyroid hormone receptor, pregnane X receptor, and constitutive androstane receptor. Emerging in vitro evidence also points to a critical role of liver X receptor (LXR) in regulating Thrsp transcription in hepatocytes. In the present study, we showed that Thrsp was up-regulated in livers of db/db mice and high-fat-diet-fed mice, two models of murine NAFLD. Hepatic overexpression of Thrsp increased triglyceride accumulation with enhanced lipogenesis in livers of C57Bl/6 mice, whereas hepatic Thrsp gene silencing attenuated the fatty liver phenotype in db/db mice. LXR activator TO901317 induced Thrsp expression in livers of wild-type (WT) and LXR-ß gene-deficient mice, but not in LXR-α or LXR-α/ß double-knockout mice. TO901317 treatment significantly enhanced hepatic sterol regulatory element-binding protein 1c (SREBP-1c) expression and activity in WT mice, but failed to induce Thrsp expression in SREBP-1c gene-deficient mice. Sequence analysis revealed four LXR response-element-like elements and one sterol regulatory element (SRE)-binding site within a -2,468 ∼+1-base-pair region of the Thrsp promoter. TO901317 treatment and LXR-α overexpression failed to induce, whereas overexpression of SREBP-1c significantly increased Thrsp promoter activity. Moreover, deletion of the SRE site completely abolished SREBP-1c-induced Thrsp transcription. CONCLUSION: Thrsp is a lipogenic gene in the liver that is induced by the LXR agonist through an LXR-α-mediated, SREBP-1c-dependent mechanism. Therefore, Thrsp may represent a potential therapeutic target for the treatment of NAFLD.


Assuntos
Fígado Gorduroso/fisiopatologia , Lipogênese/fisiologia , Fígado/fisiopatologia , Proteínas Nucleares/fisiologia , Receptores Nucleares Órfãos/fisiologia , Transdução de Sinais/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/fisiologia , Fatores de Transcrição/fisiologia , Animais , Anticolesterolemiantes/farmacologia , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Hidrocarbonetos Fluorados/farmacologia , Fígado/patologia , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Hepatopatia Gordurosa não Alcoólica , Receptores Nucleares Órfãos/deficiência , Receptores Nucleares Órfãos/efeitos dos fármacos , Sulfonamidas/farmacologia , Transcrição Gênica/fisiologia
13.
World J Gastroenterol ; 29(1): 75-95, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36683713

RESUMO

Nonalcoholic fatty liver disease (NAFLD), a leading chronic disease worldwide, affects approximately a quarter of the global population. Nonalcoholic steatohepatitis (NASH) is an advanced form of NAFLD and is more likely to progress to liver fibrosis than simple steatosis. NASH is also identified as the most rapidly growing cause of hepatocellular carcinoma. Although in the past decade, several phase II/III clinical trials have shown promising results in the use of novel drugs targeting lipid synthase, farnesoid X receptor signaling, peroxisome proliferator-activated receptor signaling, hepatocellular injury, and inflammatory signaling, proven pharmaceutical agents to treat NASH are still lacking. Thus, continuous exploration of the mechanism underlying the pathogenesis of NAFLD and the identification of novel therapeutic targets remain urgent tasks in the field. In the current review, we summarize studies reported in recent years that not only provide new insights into the mechanisms of NAFLD development but also explore the possibility of treating NAFLD by targeting newly identified signaling pathways. We also discuss evidence focusing on the intrahepatic targets involved in the pathogenesis of NAFLD as well as extrahepatic targets affecting liver metabolism and function.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/patologia , Cirrose Hepática/metabolismo , Transdução de Sinais , Neoplasias Hepáticas/patologia , Fígado/patologia
14.
Nat Commun ; 14(1): 8151, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071367

RESUMO

Aging is a major risk factor for metabolic disorders. Polyunsaturated fatty acid-derived bioactive lipids play critical roles as signaling molecules in metabolic processes. Nonetheless, their effects on age-related liver steatosis remain unknown. Here we show that senescent liver cells induce liver steatosis in a paracrine manner. Linoleic acid-derived 9-hydroxy-octadecadienoic acid (9-HODE) and 13-HODE increase in middle-aged (12-month-old) and aged (20-month-old) male mouse livers and conditioned medium from senescent hepatocytes and macrophages. Arachidonate 15-lipoxygenase, an enzyme for 13-HODE and 9-HODE production, is upregulated in senescent cells. A 9-HODE and 13-HODE mixture induces liver steatosis and activates SREBP1. Furthermore, catalase (CAT) is a direct target of 13-HODE, and its activity is decreased by 13-HODE. CAT overexpression reduces 13-HODE-induced liver steatosis and protects male mice against age-related liver steatosis. Therefore, 13-HODE produced by senescent hepatocytes and macrophages activates SREBP1 by directly inhibiting CAT activity and promotes liver steatosis.


Assuntos
Fígado Gorduroso , Ácidos Linoleicos , Masculino , Camundongos , Animais , Catalase , Ácidos Linoleicos/metabolismo , Ácido Linoleico , Fígado/metabolismo
15.
Hepatology ; 53(6): 1906-16, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21412813

RESUMO

UNLABELLED: Pancreatic-derived factor (PANDER) is a pancreatic islet-specific cytokine that cosecretes with insulin and is important for ß cell function. Here, we show that PANDER is constitutively expressed in hepatocytes, and its expression is significantly increased in steatotic livers of diabetic insulin-resistant db/db mice and mice fed a high-fat diet. Overexpression of PANDER in the livers of C57Bl/6 mice promoted lipogenesis, with increased Forkhead box 1 (FOXO1) expression, whereas small interfering RNA-mediated knockdown of hepatic PANDER significantly attenuated steatosis, with reduced FOXO1 expression in db/db mice. Hepatic PANDER silencing also attenuated insulin resistance and hyperglycemia in db/db mice. In cultured hepatocytes, PANDER overexpression induced lipid deposition, increased FOXO1 expression, and suppressed insulin-stimulated Akt activation and FOXO1 inactivation. Moreover, FOXO1 overexpression increased PANDER expression in cultured hepatocytes and mouse livers. CONCLUSION: PANDER promotes lipogenesis and compromises insulin signaling in the liver by increasing FOXO1 activity. PANDER may represent a potential therapeutic target for the treatment of fatty liver and insulin resistance.


Assuntos
Citocinas/fisiologia , Diabetes Mellitus/fisiopatologia , Fígado Gorduroso/fisiopatologia , Fatores de Transcrição Forkhead/fisiologia , Lipogênese/fisiologia , Fígado/metabolismo , Transdução de Sinais/fisiologia , Adulto , Animais , Biópsia , Células Cultivadas , Citocinas/genética , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Proteína Forkhead Box O1 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Resistência à Insulina/fisiologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley
16.
Biochim Biophys Acta Mol Basis Dis ; 1868(8): 166413, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413401

RESUMO

BACKGROUND: The mechanisms underlying the progression of liver disease from simple hepatic steatosis to advanced nonalcoholic steatohepatitis (NASH) and liver fibrosis warrant further investigation. Increased mRNA levels of Annexin A2 protein (Anxa2) have been observed in patients with NASH. However, the role of Anxa2 in NASH remains unclear. METHODS: The protein levels of Anxa2 were analyzed in the livers of mice and patients with NASH. Anxa2-knockout and -knockdown mice were generated, and NASH was induced through a high fructose, palmitate, and cholesterol (FPC) diet or methionine- and choline-deficient (MCD) diet. FINDINGS: We found elevated expression of Anxa2 in the livers of patients and mice with NASH. Anxa2 knockdown but not knockout ameliorated liver fibrosis in both FPC and MCD diet-fed mice. Liver-specific Anxa2 overexpression increased collagen deposition in mice fed a normal diet. Mechanistically, Anxa2 overexpression in hepatocytes promoted hepatic stellate cell activation in a paracrine manner by increasing osteopontin expression. Notch inhibition suppressed the exogenous overexpression of Anxa2-induced osteopontin and endogenous Anxa2 expression. Additionally, Anxa2 overexpression accelerated the progression of nonalcoholic fatty liver disease (NAFLD) in mice fed a high-fat diet. Moreover, Anxa2 levels were higher in NAFLD patients with advanced liver fibrosis than in those with mild liver fibrosis, as determined using the Gene Expression Omnibus database. INTERPRETATION: In conclusion, we found increased Anxa2 expression in hepatocytes promoted liver fibrosis in NASH mice by increasing osteopontin expression. The Anxa2-Notch positive regulatory loop contributes to this process and represents a novel target for the treatment of NASH-related liver fibrosis.


Assuntos
Anexina A2 , Hepatopatia Gordurosa não Alcoólica , Osteopontina , Animais , Anexina A2/genética , Anexina A2/metabolismo , Hepatócitos/metabolismo , Humanos , Cirrose Hepática/patologia , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Osteopontina/genética , Osteopontina/metabolismo
17.
JCI Insight ; 7(23)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36477358

RESUMO

Nonalcoholic steatohepatitis (NASH) is closely related to liver fibrosis. The role of coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2) in NASH remains unknown. CHCHD2's functions as a transcription factor have received much less attention than those in mitochondria. Herein, we systematically characterized the role of CHCHD2 as a transcription factor by chromatin immunoprecipitation sequencing and found its target genes were enriched in nonalcoholic fatty liver disease (NAFLD). Overall, CHCHD2 expression was found to be increased in the livers of patients with NAFLD and those of NASH mice. In line with these findings, CHCHD2 deficiency ameliorated NASH- and thioacetamide-induced liver fibrosis, whereas hepatocyte-specific CHCHD2 overexpression promoted liver fibrosis in NASH mice via Notch signaling. Specifically, CHCHD2-overexpressing hepatocytes activated hepatic stellate cells by upregulating osteopontin levels, a downstream mediator of Notch signals. Moreover, Notch inhibition attenuated CHCHD2 overexpression-induced liver fibrosis in vivo and in vitro. Then we found lipopolysaccharide-induced CHCHD2 expression in hepatocytes was reverted by verteporfin, an inhibitor that disrupts the interaction between Yes-associated protein (YAP) and transcriptional enhanced associate domains (TEADs). In addition, CHCHD2 levels were positively correlated with those of TEAD1 in human samples. In conclusion, CHCHD2 is upregulated via YAP/TAZ-TEAD in NASH livers and consequently promotes liver fibrosis by activating the Notch pathway and enhancing osteopontin production.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Proteínas de Ligação a DNA/genética , Cirrose Hepática/genética , Hepatopatia Gordurosa não Alcoólica/genética , Fatores de Transcrição/genética
18.
Nat Commun ; 13(1): 6577, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323699

RESUMO

17ß-hydroxysteroid dehydrogenase-13 is a hepatocyte-specific, lipid droplet-associated protein. A common loss-of-function variant of HSD17B13 (rs72613567: TA) protects patients against non-alcoholic fatty liver disease with underlying mechanism incompletely understood. In the present study, we identify the serine 33 of 17ß-HSD13 as an evolutionally conserved PKA target site and its phosphorylation facilitates lipolysis by promoting its interaction with ATGL on lipid droplets. Targeted mutation of Ser33 to Ala (S33A) decreases ATGL-dependent lipolysis in cultured hepatocytes by reducing CGI-58-mediated ATGL activation. Importantly, a transgenic knock-in mouse strain carrying the HSD17B13 S33A mutation (HSD17B1333A/A) spontaneously develops hepatic steatosis with reduced lipolysis and increased inflammation. Moreover, Hsd17B1333A/A mice are more susceptible to high-fat diet-induced nonalcoholic steatohepatitis. Finally, we find reproterol, a potential 17ß-HSD13 modulator and FDA-approved drug, confers a protection against nonalcoholic steatohepatitis via PKA-mediated Ser33 phosphorylation of 17ß-HSD13. Therefore, targeting the Ser33 phosphorylation site could represent a potential approach to treat NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosforilação , Serina/metabolismo , 17-Hidroxiesteroide Desidrogenases/genética , Hepatócitos/metabolismo , Fígado/metabolismo
19.
Front Physiol ; 12: 646491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113260

RESUMO

Arachidonic acid (ARA) is an important ω-6 polyunsaturated fatty acid (PUFA), and docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and n-3 docosapentaenoic acid (n-3 DPA) are three well-known ω-3 PUFAs. These fatty acids can be metabolized into a number of bioactive lipids. Eicosanoids derived from ARA have drawn great attention because of their important and complex biofunctions. Although EPA, DHA and n-3 DPA have also shown powerful biofunctions, we have fewer studies of metabolites derived from them than those from ARA. Recently, growing research has focused on the bioaction of ω-3 PUFA-derived metabolites, which indicates their great potential for treating metabolic disorders. Most of the functional studies of these bioactive lipids focused on their anti-inflammatory effects. However, several studies elucidated their direct effects on pancreatic ß cells, hepatocytes, adipocytes, skeletal muscle cells, and endothelial cells. These researches revealed the importance of studying the functions of metabolites derived from ω-3 polyunsaturated fatty acids other than themselves. The current review summarizes research into the effects of ω-3 PUFA-derived oxylipins on metabolic disorders, including diabetes, non-alcoholic fatty liver disease, adipose tissue dysfunction, and atherosclerosis.

20.
Sci China Life Sci ; 64(3): 404-418, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32804340

RESUMO

Targeting the white-to-brown fat conversion is important for developing potential strategies to counteract metabolic diseases; yet the mechanisms are not fully understood. Yes-associated-protein (YAP), a transcription co-activator, was demonstrated to regulate adipose tissue functions; however, its effects on browning of subcutaneous white adipose tissue (sWAT) are unclear. We demonstrated that YAP was highly expressed in cold-induced beige fat. Mechanistically, YAP was found as a target gene of miR-429, which downregulated YAP expression in vivo and in vitro. In addition, miR-429 level was decreased in cold-induced beige fat. Additionally, pharmacological inhibition of the interaction between YAP and transcriptional enhanced associate domains by verteporfin dampened the browning of sWAT. Although adipose tissue-specific YAP overexpression increased energy expenditure with increased basal uncoupling protein 1 expression, it had no additional effects on the browning of sWAT in young mice. However, we found age-related impairment of sWAT browning along with decreased YAP expression. Under these circumstances, YAP overexpression significantly improved the impaired WAT browning in middle-aged mice. In conclusion, YAP as a regulator of sWAT browning, was upregulated by lowering miR-429 level in cold-induced beige fat. Targeting the miR-429-YAP pathway could be exploited for therapeutic strategies for age-related impairment of sWAT browning.


Assuntos
Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Temperatura Baixa , MicroRNAs/metabolismo , Proteínas de Sinalização YAP/metabolismo , Células 3T3-L1 , Tecido Adiposo Branco/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Domínios Proteicos , Transcrição Gênica , Proteína Desacopladora 1/metabolismo , Proteínas de Sinalização YAP/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA