Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(2): 1681-1689, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38178655

RESUMO

The coupled relationship between carrier and phonon scattering severely limits the thermoelectric performance of n-type GeTe materials. Here, we provide an efficient strategy to enlarge grains and induce vacancy clusters for decoupling carrier-phonon scattering through the annealing optimization of n-type GeTe-based materials. Specifically, boundary migration is used to enlarge grains by optimizing the annealing time, while vacancy clusters are induced through the aggregation of Ge vacancies during annealing. Such enlarged grains can weaken carrier scattering, while vacancy clusters can strengthen phonon scattering, leading to decoupled carrier-phonon scattering. As a result, a ratio between carrier mobility and lattice thermal conductivity of ∼492.8 cm3 V-1 s-1 W-1 K and a peak ZT of ∼0.4 at 473 K are achieved in Ge0.67Pb0.13Bi0.2Te. This work reveals the critical roles of enlarged grains and induced vacancy clusters in decoupling carrier-phonon scattering and demonstrates the viability of fabricating high-performance n-type GeTe materials via annealing optimization.

2.
Adv Sci (Weinh) ; : e2408374, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324659

RESUMO

Due to its inherent ductility, Ag2S shows promise as a flexible thermoelectric material for harnessing waste heat from diverse sources. However, its thermoelectric performance remains subpar, and existing enhancement strategies often compromise its ductility. In this study, a novel Sn-doping-induced biphasic structuring approach is introduced to synergistically control electron and phonon transport. Specifically, Sn-doping is incorporated into Ag2S0.7Se0.3 to form a biphasic composition comprising (Ag, Sn)2S0.7Se0.3 as the primary phase and Ag2S0.7Se0.3 as the secondary phase. This biphasic configuration achieves a competitive figure-of-merit ZT of 0.42 at 343 K while retaining exceptional ductility, exceeding 90%. The dominant (Ag, Sn)2S0.7Se0.3 phase bolsters the initially low carrier concentration, with interfacial boundaries between the phases effectively mitigating carrier scattering and promoting carrier mobility. Consequently, the optimized power factor reaches 5 µW cm-1 K-2 at 343 K. Additionally, the formation of the biphasic structure induces diverse micro/nano defects, suppressing lattice thermal conductivity to a commendable 0.18 W m-1 K-1, thereby achieving optimized thermoelectric performance. As a result, a four-leg in-plane flexible thermoelectric device is fabricated, exhibiting a maximum power density of ≈49 µW cm-2 under the temperature difference of 30 K, much higher than that of organic-based flexible thermoelectric devices.

3.
Nat Commun ; 15(1): 3426, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654020

RESUMO

Single-walled carbon nanotubes (SWCNTs)-based thermoelectric materials, valued for their flexibility, lightweight, and cost-effectiveness, show promise for wearable thermoelectric devices. However, their thermoelectric performance requires significant enhancement for practical applications. To achieve this goal, in this work, we introduce rational "triple treatments" to improve the overall performance of flexible SWCNT-based films, achieving a high power factor of 20.29 µW cm-1 K-2 at room temperature. Ultrasonic dispersion enhances the conductivity, NaBH4 treatment reduces defects and enhances the Seebeck coefficient, and cold pressing significantly densifies the SWCNT films while preserving the high Seebeck coefficient. Also, bending tests confirm structural stability and exceptional flexibility, and a six-legged flexible device demonstrates a maximum power density of 2996 µW cm-2 at a 40 K temperature difference, showing great application potential. This advancement positions SWCNT films as promising flexible thermoelectric materials, providing insights into high-performance carbon-based thermoelectrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA