Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 116(3): 110845, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38614287

RESUMO

Rubus, the largest genus in Rosaceae, contains over 1400 species that distributed in multiple habitats across the world, with high species diversity in the temperate regions of Northern Hemisphere. Multiple Rubus species are cultivated for their valuable fruits. However, the intrageneric classification and phylogenetic relationships are still poorly understood. In this study, we sequenced, assembled, and characterized 17 plastomes of Rubus, and conducted comparative genomics integrating with 47 previously issued plastomes of this genus. The 64 plastomes of Rubus exhibited typical quadripartite structure with sizes ranging from 155,144 to 156,700 bp, and contained 132 genes including 87 protein-coding genes, 37 tRNA genes and eight rRNA genes. All plastomes are conservative in the gene order, the frequency of different types of long repeats and simple sequence repeats (SSRs), the codon usage, and the selection pressure of protein-coding genes. However, there are also some differences in the Rubus plastomes, including slight contraction and expansion of the IRs, a variation in the numbers of SSRs and long repeats, and some genes in certain clades undergoing intensified or relaxed purifying selection. Phylogenetic analysis based on whole plastomes showed that the monophyly of Rubus was strongly supported and resolved it into six clades corresponding to six subgenera. Moreover, we identified 12 highly variable regions that could be potential molecular markers for phylogenetic, population genetic, and barcoding studies. Overall, our study provided insight into plastomic structure and sequence diversification of Rubus, which could be beneficial for future studies on identification, evolution, and phylogeny in this genus.


Assuntos
Genômica , Filogenia , Rubus , Rubus/genética , Genoma de Cloroplastos , Cloroplastos/genética , Repetições de Microssatélites , Evolução Molecular , RNA de Transferência/genética , Uso do Códon
2.
Front Plant Sci ; 13: 888049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247567

RESUMO

Plastids are one of the main distinguishing characteristics of the plant cell. The plastid genome (plastome) of most autotrophic seed plants possesses a highly conserved quadripartite structure containing a large single-copy (LSC) and a small single-copy (SSC) region separated by two copies of the inverted repeat (termed as IRA and IRB). The IRs have been inferred to stabilize the plastid genome via homologous recombination-induced repair mechanisms. IR loss has been documented in seven autotrophic flowering plant lineages and two autotrophic gymnosperm lineages, and the plastomes of these species (with a few exceptions) are rearranged to a great extent. However, some plastomes containing normal IRs also show high structural variation. Therefore, the role of IRs in maintaining plastome stability is still controversial. In this study, we first integrated and compared genome structure and sequence evolution of representative plastomes of all nine reported IR-lacking lineages and those of their closest relative(s) with canonical inverted repeats (CRCIRs for short) to explore the role of the IR in maintaining plastome structural stability and sequence evolution. We found the plastomes of most IR-lacking lineages have experienced significant structural rearrangement, gene loss and duplication, accumulation of novel small repeats, and acceleration of synonymous substitution compared with those of their CRCIRs. However, the IR-lacking plastomes show similar structural variation and sequence evolution rate, and even less rearrangement distance, dispersed repeat number, tandem repeat number, indels frequency and GC3 content than those of IR-present plastomes with variation in Geraniaceae. We argue that IR loss is not a driver of these changes but is instead itself a consequence of other processes that more broadly shape both structural and sequence-level plastome evolution.

3.
Opt Lett ; 36(6): 784-6, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21403682

RESUMO

A significant advancement of cw lasing in Cr4+:Y3Al5O12 (Cr4+:YAG) double-clad crystal fiber grown by the codrawing laser-heated pedestal growth technique was demonstrated at RT. The optical-to-optical slope efficiency of 33.9% is the highest, to the best of our knowledge, among all Cr4+:YAG lasers, whether they are in bulk or fiber forms. The low-threshold lasing of 78.2 mW and high efficiency are in good agreement with the simulation. The keys to the high laser efficiency are twofold: one is the improved Cr4+ emission cross section and fluorescence lifetime due to release of the strain on the distorted Cr4+ tetrahedron, which also mitigates photobleaching in Cr4+:YAG; the other is the improved core uniformity at long fiber lengths. In addition, because of the low threshold, the impact of excited state absorption of the pump light is significantly reduced. The effects of crystal-orientation, self-selected, and pump-dependent linear polarization states were also addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA