Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Immunology ; 172(3): 362-374, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38469682

RESUMO

Small cell lung cancer (SCLC), recognized as the most aggressive subtype of lung cancer, presents an extremely poor prognosis. Currently, patients with small cell lung cancer face a significant dearth of effective alternative treatment options once they experience recurrence and progression after first-line therapy. Despite the promising efficacy of immunotherapy, particularly immune checkpoint inhibitors in non-small cell lung cancer (NSCLC) and various other tumours, its impact on significantly enhancing the prognosis of SCLC patients remains elusive. DLL3 has emerged as a compelling target for targeted therapy in SCLC due to its high expression on the membranes of SCLC and other neuroendocrine carcinoma cells, with minimal to no expression in normal cells. Our previous work led to the development of a novel multiple chain chimeric antigen receptor (CAR) leveraging the TREM1 receptor and DAP12, which efficiently activated T cells and conferred potent cell cytotoxicity. In this study, we have developed a DLL3-TREM1/DAP12 CAR-T (DLL3-DT CAR-T) therapy, demonstrating comparable anti-tumour efficacy against SCLC cells in vitro. In murine xenograft and patient-derived xenograft models, DLL3-DT CAR-T cells exhibited a more robust tumour eradication efficiency than second-generation DLL3-BBZ CAR-T cells. Furthermore, we observed elevated memory phenotypes, induced durable responses, and activation under antigen-presenting cells in DLL3-DT CAR-T cells. Collectively, these findings suggest that DLL3-DT CAR-T cells may offer a novel and potentially effective therapeutic strategy for treating DLL3-expressing SCLC and other solid tumours.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Imunoterapia Adotiva , Neoplasias Pulmonares , Proteínas de Membrana , Receptores de Antígenos Quiméricos , Carcinoma de Pequenas Células do Pulmão , Receptor Gatilho 1 Expresso em Células Mieloides , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinoma de Pequenas Células do Pulmão/imunologia , Carcinoma de Pequenas Células do Pulmão/terapia , Humanos , Animais , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Linhagem Celular Tumoral , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Camundongos SCID , Feminino
2.
Cell Death Dis ; 15(1): 12, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182561

RESUMO

Lung squamous cell carcinoma (LUSC) is a subtype of lung cancer for which precision therapy is lacking. Chimeric antigen receptor T-cells (CAR-T) have the potential to eliminate cancer cells by targeting specific antigens. However, the tumor microenvironment (TME), characterized by abnormal metabolism could inhibit CAR-T function. Therefore, the aim of this study was to improve CAR-T efficacy in solid TME by investigating the effects of amino acid metabolism. We found that B7H3 was highly expressed in LUSC and developed DAP12-CAR-T targeting B7H3 based on our previous findings. When co-cultured with B7H3-overexpressing LUSC cells, B7H3-DAP12-CAR-T showed significant cell killing effects and released cytokines including IFN-γ and IL-2. However, LUSC cells consumed methionine (Met) in a competitive manner to induce a Met deficiency. CAR-T showed suppressed cell killing capacity, reduced cytokine release and less central memory T phenotype in medium with lower Met, while the exhaustion markers were up-regulated. Furthermore, the gene NKG7, responsible for T cell cytotoxicity, was downregulated in CAR-T cells at low Met concentration due to a decrease in m5C modification. NKG7 overexpression could partially restore the cytotoxicity of CAR-T in low Met. In addition, the anti-tumor efficacy of CAR-T was significantly enhanced when co-cultured with SLC7A5 knockdown LUSC cells at low Met concentration. In conclusion, B7H3 is a prospective target for LUSC, and B7H3-DAP12-CAR-T cells are promising for LUSC treatment. Maintaining Met levels in CAR-T may help overcome TME suppression and improve its clinical application potential.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Receptores de Antígenos Quiméricos , Humanos , Citocinas , Pulmão , Metionina/farmacologia , Racemetionina , Microambiente Tumoral
3.
Med Oncol ; 40(8): 226, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37405498

RESUMO

While CAR-T cell therapy has shown success against hematological tumors, its effectiveness for solid tumors, including ovarian cancer, remains unsatisfactory. This study aimed to develop and evaluate the efficacy of novel chimeric antigen receptor T (CAR-T) cells targeting PTK7 through TREM1/DAP12 signaling against ovarian cancer. The expression of PTK7 in ovarian cancer tissues and cells was evaluated using immunohistochemical staining and flow cytometric analysis. The anti-tumor effects of PTK7 CAR-T cells were assessed in vitro using real-time cell analysis and enzyme-linked immunosorbent assay, and in vivo using a xenograft tumor model. PTK7 was significantly expressed in ovarian cancer tissues and cells. PTK7-targeting CAR-T cells based on TREM1/DAP12 signaling exhibited potent cytotoxicity against ovarian cancer cells expressing PTK7 in vitro, and effectively eradicated tumors in vivo. Our findings suggest that TREM1/DAP12-based PTK7 CAR-T cells have potential as a treatment strategy for ovarian cancer. Further studies are needed to evaluate the safety and efficacy of this approach in clinical trials.


Assuntos
Neoplasias Ovarianas , Receptores de Antígenos Quiméricos , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Linfócitos T , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva , Ensaios Antitumorais Modelo de Xenoenxerto , Moléculas de Adesão Celular/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo
4.
J Virol ; 85(21): 11058-68, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21880772

RESUMO

Junín virus is the causative agent for Argentine hemorrhagic fever, and its natural host is the New World rodent Calomys musculinus. The virus is transmitted to humans by aerosolization, and it is believed that many of the clinical symptoms are caused by cytokines produced by sentinel cells of the immune system. Here we used the Junín virus vaccine strain Candid 1 to determine whether mouse cells could be used to study virus entry and antiviral innate immune responses. We show that Candid 1 can infect and propagate in different mouse-derived cell lines through a low-pH-dependent, transferrin receptor 1-independent mechanism, suggesting that there is a second entry receptor. In addition, Candid 1 induced expression of the antiviral cytokines tumor necrosis factor alpha and beta interferon in macrophages, and this induction was independent of viral replication. Using Candid 1, as well as virus-like particles bearing the viral glycoprotein, to infect different primary cells and established macrophage cell lines with deletions in the Toll-like receptor (TLR) pathway, we show that TLR2 is a cellular sensor of both the Parodi and Candid 1 viral glycoproteins. Because Junín virus is highly lethal in humans, the use of an experimentally tractable model system, such as the mouse, could provide a better understanding of the antiviral innate cellular responses to Junín virus and the role of these responses in pathogenesis.


Assuntos
Imunidade Inata , Vírus Junin/crescimento & desenvolvimento , Vírus Junin/imunologia , Animais , Células Cultivadas , Citocinas/biossíntese , Expressão Gênica , Humanos , Camundongos , Receptores Virais/metabolismo , Receptor 2 Toll-Like/imunologia , Internalização do Vírus
5.
Immunotherapy ; 14(18): 1457-1466, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36597720

RESUMO

Aim: This work was designed to explore whether c-Jun overexpression could improve the persistence and antitumor efficacy of DAP chimeric antigen receptor T-cell (CAR-T) cells. Methods: The in vitro and in vivo antitumor effects of mesothelin (MSLN) targeting DAP-CAR-T cells were verified by ELISA, real-time cell analysis and in a xenograft model. Results: c-Jun overexpression did not affect DAP-CAR-T cell expansion while slightly increasing IL-2 secretion. Moreover, c-Jun did not improve the antitumor efficacy of DAP-CAR-T cells in vitro or in vivo, but reduced LAG3 expression and increased the ratio of Tcm and Tn/Tscm cells in vivo. Conclusion: The findings indicate that coexpression with c-Jun in DAP-CAR-T cells slightly improves T-cell exhaustion and central memory phenotype maintenance, which may be useful for DAP-CAR-T cell therapy in solid tumors.


Chimeric antigen receptor (CAR) T-cell therapy has achieved great success in treating patients with hematological tumors such as b-acute lymphoblastic leukemia and lymphoma. However, a growing number of clinical trials show that most of the second-generation CAR-T cells with different targeting single-chain fragment variables (scFv) did not exhibit comparable therapeutic effects with CD19-targeting CAR-T cells in solid tumors. To overcome this challenge, scientists have developed several methods to optimize the structure of CARs, including coexpression of a transcription factor called c-Jun in CAR-T cells. The authors previously developed a novel multiple-chain DAP-CAR that shows promising solid tumor eradication capacity. In this study, overexpression of c-Jun only slightly improved the antitumor activity of DAP-CAR-T cells, suggesting other optimization methods are needed.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Linhagem Celular Tumoral , Imunoterapia Adotiva , Neoplasias/terapia , Neoplasias/metabolismo , Fenótipo , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto , Animais
6.
Proc Natl Acad Sci U S A ; 105(7): 2664-9, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18268337

RESUMO

Transferrin receptor 1 (TfR1) is a cellular receptor for the New World hemorrhagic fever arenaviruses Machupo (MACV), Junín (JUNV), and Guanarito (GTOV). Each of these viruses is specifically adapted to a distinct rodent host species, but all cause human disease. Here we compare the ability of these viruses to use various mammalian transferrin receptor 1 (TfR1) orthologs, including those of the South American rodents that serve as reservoirs for MACV, JUNV, and GTOV (Calomys callosus, Calomys musculinus, and Zygodontomys brevicauda, respectively). Retroviruses pseudotyped with MACV and JUNV but not GTOV glycoproteins (GPs) efficiently used C. callosus TfR1, whereas only JUNV GP could use C. musculinus TfR1. All three viruses efficiently used Z. brevicauda TfR1. TfR1 orthologs from related rodents, including house mouse (Mus musculus) and rat (Rattus norvegicus), did not support entry of these viruses. In contrast, these viruses efficiently used human and domestic cat TfR1 orthologs. We further show that a local region of the human TfR1 apical domain, including tyrosine 211, determined the efficiency with which MACV, JUNV, and GTOV used various TfR1 orthologs. Our data show that these New World arenaviruses are specifically adapted to the TfR1 orthologs of their respective rodent hosts and identify key commonalities between these orthologs and human TfR1 necessary for efficient transmission of these viruses to humans.


Assuntos
Infecções por Arenaviridae/transmissão , Arenavirus do Novo Mundo/fisiologia , Receptores da Transferrina/metabolismo , Sequência de Aminoácidos , Animais , Infecções por Arenaviridae/genética , Infecções por Arenaviridae/metabolismo , Sítios de Ligação , Glicosilação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Receptores da Transferrina/química , Receptores da Transferrina/classificação , Receptores da Transferrina/genética , Alinhamento de Sequência , Homologia Estrutural de Proteína , Tirosina/genética , Tirosina/metabolismo , Internalização do Vírus
7.
Immunotherapy ; 13(1): 5-10, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045890

RESUMO

Background: CD19-targeted chimeric antigen receptor (CAR) T-cell therapy has emerged as a powerful immunotherapy in relapsed or refractory B-cell acute lymphoblastic leukemia. The changes in extramedullary (EM) disease in pediatric relapsed or refractory B-cell acute lymphoblastic leukemia after CAR T-cell therapy have rarely been reported. Materials & methods: A child with relapsed B-ALL was treated with CAR T-cell therapy. Bone marrow morphological examination, minimal residual disease, fusion mutation and radiological evaluation of the EM disease were performed before and after CAR T-cell infusion. Results: Radiological assessment revealed a distinct asymptomatic pseudo progression of EM involvements on day 16 after CAR T-cell infusion. Conclusion: Pseudoprogression of EM disease indicates heterogeneous immune-related patterns of response in patients treated with CAR-T therapy. Such patients should be closely monitored and practical immune-related response criteria should be developed for them.


Assuntos
Antígenos CD19/uso terapêutico , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos/uso terapêutico , Criança , Progressão da Doença , Humanos , Masculino , Recidiva , Resultado do Tratamento
8.
Mol Ther Oncolytics ; 23: 96-106, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34703879

RESUMO

Engineered T cells that express chimeric antigen receptors (CARs) have been a promising therapy for hematologic malignancies. The optimization of CAR structure using different signaling domains can alter a wide range of CAR-T cell properties, including anti-tumor activity, long-term persistence, and safety. In this study, we developed a novel CAR structure based on KIRS2/Dap12 for B cell acute lymphoblastic leukemia (B-ALL) antigen CD19 and compared the anti-tumor efficacy and safety of this construct in transduced T cells with standard second-generation CAR-T cells targeting CD19 for B-ALL in vitro and in vivo and in adult relapsed/refractory (r/r) B-ALL patients. We discovered that KIRS2/Dap12 receptor infused with 4-1BB co-stimulation domain could enhance anti-tumor efficacy by remarkably increasing the production of pro-inflammatory interleukin-2 (IL-2), especially when co-cultured with antigen-positive tumor cells. In addition, CD19-KIRS2/Dap12-BB CAR-T cells showed the inspiring outcome that complete responses were seen in 4 of 4 (100%) patients without neurotoxicity and a high rate of severe cytokine release syndrome (CRS) after CAR-T infusion in a phase I clinical trial. Given these encouraging findings, CD19-KIRS2/Dap12-BB CAR-T cells are safe and can lead to clinical responses in adult patients with r/r B-ALL, indicating that further assessment of this therapy is warranted.

9.
Immunotherapy ; 11(12): 1043-1055, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31268375

RESUMO

Aim: Chimeric antigen receptor-engineered T (CAR-T) cells have gained huge success in treating hematological malignancies, yet the CD3ζ-based CAR-T therapies have not shown comparable clinical benefits in solid tumors. We designed an alternative chimeric immunoreceptor in which a single-chain variable fragment was fused to the transmembrane-cytoplasmic domains of triggering receptor expressed on myeloid (TREM1), which may show potent antitumor activity. Methods: To generate TREM1/DNAX activation protein of 12 kDa (Dap12)-based CAR-T cells, TREM1 along with DAP12 was transduced into T cells. Results: TREM1/Dap12-based CAR-T cells showed more lysis in vitro and a similar antitumor effect in mouse models compared with CD19BBζ CAR-T cells. Conclusion: In this study, we designed a TREM1/Dap12-based CAR, which was not reported previously and demonstrated that TREM1/Dap12-based CAR-T cells had potent antitumor activity in vitro and in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Imunoterapia Adotiva/métodos , Linfoma de Células B/terapia , Receptores de Antígenos Quiméricos/genética , Proteínas Recombinantes de Fusão/genética , Linfócitos T/imunologia , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Animais , Antígenos CD19/genética , Linhagem Celular Tumoral , Feminino , Proteínas Ligadas por GPI/imunologia , Humanos , Linfoma de Células B/imunologia , Mesotelina , Camundongos , Engenharia de Proteínas , Anticorpos de Cadeia Única/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA