Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 182, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622684

RESUMO

Hydrogels are a class of highly absorbent and easily modified polymer materials suitable for use as slow-release carriers for drugs. Gene therapy is highly specific and can overcome the limitations of traditional tissue engineering techniques and has significant advantages in tissue repair. However, therapeutic genes are often affected by cellular barriers and enzyme sensitivity, and carrier loading of therapeutic genes is essential. Therapeutic gene hydrogels can well overcome these difficulties. Moreover, gene-therapeutic hydrogels have made considerable progress. This review summarizes the recent research on carrier gene hydrogels for the treatment of tissue damage through a summary of the most current research frontiers. We initially introduce the classification of hydrogels and their cross-linking methods, followed by a detailed overview of the types and modifications of therapeutic genes, a detailed discussion on the loading of therapeutic genes in hydrogels and their characterization features, a summary of the design of hydrogels for therapeutic gene release, and an overview of their applications in tissue engineering. Finally, we provide comments and look forward to the shortcomings and future directions of hydrogels for gene therapy. We hope that this article will provide researchers in related fields with more comprehensive and systematic strategies for tissue engineering repair and further promote the development of the field of hydrogels for gene therapy.


Assuntos
Hidrogéis , Engenharia Tecidual , Engenharia Tecidual/métodos , Terapia Genética , Polímeros
2.
Genes (Basel) ; 15(2)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38397200

RESUMO

Quantitative reverse transcription PCR (qRT-PCR) can screen applicable reference genes of species, and reference genes can be used to reduce experimental errors. Sudan grass (Sorghum sudanense (Piper) Stapf) is a high-yield, abiotic-tolerant annual high-quality forage with a wide range of uses. However, no studies have reported reference genes suitable for Sudan grass. Therefore, we found eight candidate reference genes, including UBQ10, HIS3, UBQ9, Isoform0012931, PP2A, ACP2, eIF4α, and Actin, under salt stress (NaCl), drought stress (DR), acid aluminum stress (AlCl3), and methyl jasmonate treatment (MeJA). By using geNorm, NormFinder, BestKeeper, and RefFinder, we ranked eight reference genes on the basis of their expression stabilities. The results indicated that the best reference gene was PP2A under all treatments. eIF4α can be used in CK, MeJA, NaCl, and DR. HIS3 can serve as the best reference gene in AlCl3. Two target genes (Isoform0007606 and Isoform0002387) belong to drought-stress-response genes, and they are highly expressed in Sudan grass according to transcriptome data. They were used to verify eight candidate reference genes under drought stress. The expression trends of the two most stable reference genes were similar, but the trend in expression for Actin showed a significant difference. The reference genes we screened provided valuable guidance for future research on Sudan grass.


Assuntos
Piper , Sorghum , Estresse Fisiológico/genética , Transcrição Reversa , Sorghum/genética , Genes de Plantas , Piper/genética , Actinas/genética , Cloreto de Sódio/farmacologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Regulação da Expressão Gênica de Plantas
3.
J Vis Exp ; (208)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38912815

RESUMO

Microspheres are micrometer-sized particles that can load and gradually release drugs via physical encapsulation or adsorption onto the surface and within polymers. In the field of biomedicine, hydrogel microspheres have been extensively studied for their application as drug carriers owing to their ability to reduce the frequency of drug administration, minimize side effects, and improve patient compliance. Sodium alginate (ALG) is a naturally occurring linear polysaccharide with three backbone glycosidic linkages. There are two auxiliary hydroxyl groups present in each of the moieties of the polymer, which have the characteristics of an alcohol hydroxyl moiety. The synthetic ALG units can undergo chemical cross-linking reactions with metal ions, forming a cross-linked network structure of polymer stacks, ultimately forming a hydrogel. Hydrogel microspheres can be prepared using a simple process involving the ionic cross-linking properties of ALG. In this study, we prepared ALG-based hydrogel microspheres (ALGMS) using a microfluidic electrodeposition strategy. The prepared hydrogel microspheres were uniformly sized and well-dispersed, owing to accurate control of the microfluidic electrospray flow. ALGMS cross-linked with different metal ions were prepared using a microfluidic electrospray technique combining microfluidic and high electric field, and its antimicrobial properties, slow drug release ability, and biocompatibility were investigated. This technology holds promise for application in advanced drug development and production.


Assuntos
Alginatos , Microesferas , Alginatos/química , Reagentes de Ligações Cruzadas/química , Hidrogéis/química , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Portadores de Fármacos/química
4.
Elife ; 122024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488837

RESUMO

Hepatic ischemia/reperfusion injury (HIRI) is a common and inevitable factor leading to poor prognosis in various liver diseases, making the outcomes of current treatments in clinic unsatisfactory. Metformin has been demonstrated to be beneficial to alleviate HIRI in recent studies, however, the underpinning mechanism remains unclear. In this study, we found metformin mitigates HIRI-induced ferroptosis through reshaped gut microbiota in mice, which was confirmed by the results of fecal microbiota transplantation treatment but showed the elimination of the beneficial effects when gut bacteria were depleted using antibiotics. Detailedly, through 16S rRNA and metagenomic sequencing, we identified that the metformin-reshaped microbiota was characterized by the increase of gamma-aminobutyric acid (GABA) producing bacteria. This increase was further confirmed by the elevation of GABA synthesis key enzymes, glutamic acid decarboxylase and putrescine aminotransferase, in gut microbes of metformin-treated mice and healthy volunteers. Furthermore, the benefit of GABA against HIRI-induced ferroptosis was demonstrated in GABA-treated mice. Collectively, our data indicate that metformin can mitigate HIRI-induced ferroptosis by reshaped gut microbiota, with GABA identified as a key metabolite.


Assuntos
Ferroptose , Microbioma Gastrointestinal , Metformina , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , Metformina/farmacologia , RNA Ribossômico 16S , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Isquemia , Ácido gama-Aminobutírico/farmacologia
5.
Front Nutr ; 10: 1327814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192642

RESUMO

Substantial attention has been paid to the various effects of metformin on liver diseases; the liver is the targeted organ where metformin exerts its antihyperglycemic properties. In non-alcoholic fatty liver disease (NAFLD), studies have shown that metformin affects the ATP/AMP ratio to activate AMPK, subsequently governing lipid metabolism. The latest research showed that low-dose metformin targets the lysosomal AMPK pathway to decrease hepatic triglyceride levels through the PEN2-ATP6AP1 axis in an AMP-independent manner. Metformin regulates caspase-3, eukaryotic initiation factor-2a (eIF2a), and insulin receptor substrate-1 (IRS-1) in palmitate-exposed HepG2 cells, alleviating endoplasmic reticulum (ER) stress. Recent observations highlighted the critical association with intestinal flora, as confirmed by the finding that metformin decreased the relative abundance of Bacteroides fragilis while increasing Akkermansia muciniphila and Bifidobacterium bifidum. The suppression of intestinal farnesoid X receptor (FXR) and the elevation of short-chain fatty acids resulted in the upregulation of tight junction protein and the alleviation of hepatic inflammation induced by lipopolysaccharide (LPS). Additionally, metformin delayed the progression of cirrhosis by regulating the activation and proliferation of hepatic stellate cells (HSCs) via the TGF-ß1/Smad3 and succinate-GPR91 pathways. In hepatocellular carcinoma (HCC), metformin impeded the cell cycle and enhanced the curative effect of antitumor medications. Moreover, metformin protects against chemical-induced and drug-induced liver injury (DILI) against hepatotoxic drugs. These findings suggest that metformin may have pharmacological efficacy against liver diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA