Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 299(3): 102965, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736424

RESUMO

Connexin (Cx)-forming channels play essential roles in maintaining lens homeostasis and transparency. We showed here channel-independent roles of Cx50 in cell-cell adhesion and confirmed the second extracellular (E2) domain as a critical domain for cell adhesion function. We found that cell adhesion decreased in cells expressing chimeric Cx50 in which the E2 domain was swapped with the E2 domain of either Cx43 or Cx46. In contrast, adhesion increased in cells expressing chimeric Cx43 and Cx46 with the Cx50 (E2) domain. This function is Cx channel-independent and Cx50 E2 domain-dependent cell adhesion acting in both homotypic and heterotypic manners. In addition, we generated eight site mutations of unique residues between Cx50 and the other two lens Cxs and found that mutation of any one of the residues abolished the adhesive function. Moreover, expression of adhesive-impaired mutants decreased adhesion-related proteins, N-cadherin and ß-catenin. Expression of the adhesion-impaired Cx50W188P mutant in embryonic chick lens caused enlarged extracellular spaces, distorted fiber organization, delayed nuclear condensation, and cortical cataracts. In summary, the results from both in vitro and in vivo studies demonstrate the importance of the adhesive function of Cx50 in the lens.


Assuntos
Adesão Celular , Conexinas , Cristalino , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Conexinas/metabolismo , Proteínas do Olho/metabolismo , Junções Comunicantes/metabolismo , Cristalino/metabolismo , Caderinas/metabolismo
2.
BMC Plant Biol ; 23(1): 633, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38066415

RESUMO

BACKGROUND: Flower color plays a crucial role in attracting pollinators and facilitating environmental adaptation. Investigating the causes of flower color polymorphism and understanding their potential effects on both ecology and genetics can enhance our understanding of flower color polymorphism in wild plant. RESULTS: In this study, we examined the differences of potential male and female fitness between purple- and yellow- flower individuals in Iris potaninii on the Qinghai-Tibet Plateau, and screened key genes and positively selective genes involved in flower color change. Our results showed that yellow flower exhibited a higher pollen-to-ovule ratio. Yellow flowers were derived from purple flowers due to the loss of anthocyanins, and F3H could be an essential gene affecting flower color variation though expression regulation and sequence polymorphism in this species. Furthermore, our findings suggest that genes positively selected in yellow-flowered I. potaninii might be involved in nucleotide excision repair and plant-pathogen interactions. CONCLUSIONS: These results suggest that F3H induces the flower color variation of Iris potaninii, and the subsequent ecological and additive positive selection on yellow flowers may further enhance plant adaptations to alpine environments.


Assuntos
Gênero Iris , Humanos , Gênero Iris/genética , Gênero Iris/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Tibet , Polimorfismo Genético , Flores/genética , Flores/metabolismo , Cor , Pigmentação/genética
3.
Ann Bot ; 131(1): 109-122, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34932785

RESUMO

BACKGROUND AND AIMS: Genome size is an important plant trait, with substantial interspecies variation. The mechanisms and selective pressures underlying genome size evolution are important topics in evolutionary biology. There is considerable diversity in Allium from the Qinghai-Tibetan Plateau, where genome size variation and related evolutionary mechanisms are poorly understood. METHODS: We reconstructed the Allium phylogeny using DNA sequences from 71 species. We also estimated genome sizes of 62 species, and determined chromosome numbers in 65 species. We examined the phylogenetic signal associated with genome size variation, and tested how well the data fit different evolutionary models. Correlations between genome size variations and seed mass, altitude and 19 bioclimatic factors were determined. KEY RESULTS: Allium genome sizes differed substantially between species and within diploids, triploids, tetraploids, hexaploids and octaploids. Size per monoploid genome (1Cx) tended to decrease with increasing ploidy levels. Allium polyploids tended to grow at a higher altitude than diploids. The phylogenetic tree was divided into three evolutionary branches. The genomes in Clade I were mostly close to the ancestral genome (18.781 pg) while those in Clades II and III tended to expand and contract, respectively. A weak phylogenetic signal was detected for Allium genome size. Furthermore, significant positive correlations were detected between genome size and seed mass, as well as between genome size and altitude. However, genome size was not correlated with 19 bioclimatic variables. CONCLUSIONS: Allium genome size shows gradual evolution, followed by subsequent adaptive radiation. The three well-supported Allium clades are consistent with previous studies. The evolutionary patterns in different Allium clades revealed genome contraction, expansion and relative stasis. The Allium species in Clade II may follow adaptive radiation. The genome contraction in Clade III may be due to DNA loss after polyploidization. Allium genome size might be influenced by selective pressure due to the conditions on the Qinghai-Tibetan Plateau (low temperature, high UV irradiation and abundant phosphate in the soil).


Assuntos
Allium , Allium/genética , Filogenia , Tibet , Poliploidia , Ploidias , Evolução Molecular
4.
BMC Plant Biol ; 22(1): 619, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581803

RESUMO

BACKGROUD: The greatest contribution of the Silk Road is to communicate among different countries and nationalities, and promote two-way cultural exchanges between the East and the West. We now have clearer understanding about how material civilization and religious culture of Central Asia and West Asia spread eastward along the Land Silk Road. However, there is controversial about how crops migrate along the Land Silk Road. RESULTS: We summarize archaeology, genetics, and genomics data to explore crop migration patterns. Of the 207 crops that were domesticated along the Land Silk Road, 19 for which genomic evidence was available were selected for discussion. CONCLUSIONS: There were conflicting lines of evidence for the domestication of Tibetan barley, mustard, lettuce, buckwheat, and chickpea. The main reasons for the conflicting results may include incomplete early knowledge, record differences in different period, sample sizes, and data analysis techniques. There was strong evidence that Tibetan barley, barley, wheat, and jujube were introduced into China before the existence of the Land Silk Road; and mustard, lettuce, buckwheat, chickpea, alfalfa, walnut, cauliflower, grape, spinach, apple, cucumber, mulberry, and pea spread to China via trade and human migration along the Land Silk Road.


Assuntos
Cicer , Hordeum , Humanos , Seda , China , Domesticação , Frutas , Produtos Agrícolas/genética
5.
J Biol Chem ; 295(20): 6831-6848, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32209659

RESUMO

Major depression is a prevalent affective disorder characterized by recurrent low mood. It presumably results from stress-induced deteriorations of molecular networks and synaptic functions in brain reward circuits of genetically-susceptible individuals through epigenetic processes. Epigenetic regulator microRNA-15b inhibits neuronal progenitor proliferation and is up-regulated in the medial prefrontal cortex of mice that demonstrate depression-like behavior, indicating the contribution of microRNA-15 to major depression. Using a mouse model of major depression induced by chronic unpredictable mild stress (CUMS), here we examined the effects of microRNA-15b on synapses and synaptic proteins in the nucleus accumbens of these mice. The application of a microRNA-15b antagomir into the nucleus accumbens significantly reduced the incidence of CUMS-induced depression and reversed the attenuations of excitatory synapse and syntaxin-binding protein 3 (STXBP3A)/vesicle-associated protein 1 (VAMP1) expression. In contrast, the injection of a microRNA-15b analog into the nucleus accumbens induced depression-like behavior as well as attenuated excitatory synapses and STXBP3A/VAMP1 expression similar to the down-regulation of these processes induced by the CUMS. We conclude that microRNA-15b-5p may play a critical role in chronic stress-induced depression by decreasing synaptic proteins, innervations, and activities in the nucleus accumbens. We propose that the treatment of anti-microRNA-15b-5p may convert stress-induced depression into resilience.


Assuntos
Depressão/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Proteínas Munc18/biossíntese , Núcleo Accumbens/metabolismo , Sinapses/metabolismo , Proteína 1 Associada à Membrana da Vesícula/biossíntese , Animais , Depressão/genética , Depressão/patologia , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Proteínas Munc18/genética , Núcleo Accumbens/patologia , Sinapses/genética , Sinapses/patologia , Proteína 1 Associada à Membrana da Vesícula/genética
6.
Am J Physiol Heart Circ Physiol ; 318(6): H1420-H1435, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32330088

RESUMO

Chlamydia pneumoniae infection could play a role in atherosclerosis. Toll-like receptor 2 (TLR2) and C-X-C motif chemokine receptor 4 (CXCR4) have been both shown to be involved in atherosclerosis. However, whether and how TLR2/CXCR4 cross talk is involved in C. pneumoniae infection-induced atherosclerosis remains to be determined. Our study aims to demonstrate that C. pneumoniae infection induced the cross talk between TLR2 and CXCR4 to mediate C. pneumoniae infection-induced vascular smooth muscle cell (VSMC) migration and even accelerate atherosclerosis. We first found that C. pneumoniae infection increased the aortic lesion size (en face), cross-sectional lesion area, and lipid content in aortic root lesion, which were both significantly reduced in apolipoprotein E-null (ApoE-/-)TLR2-/- or CXCR4-blocked ApoE-/- mice and were almost reversed in CXCR4-blocked ApoE-/-TLR2-/- mice. Subsequently, our data showed that C. pneumoniae infection-induced increases in VSMC contents in the atherosclerotic lesion were remarkably suppressed in ApoE-/-TLR2-/- mice or CXCR4-blocked ApoE-/- mice, and were further decreased in CXCR4-blocked ApoE-/-TLR2-/- mice. We then demonstrated that the increase in VSMC migratory capacity caused by C. pneumoniae infection was inhibited by either TLR2 or CXCR4 depletion, and downregulating both TLR2 and CXCR4 further decreased C. pneumoniae infection-induced VSMC migration by suppressing the infection-stimulated F-actin reorganization through the inhibition of the phosphorylation of focal adhesion kinase. Taken together, our data indicate that TLR2/CXCR4 coassociation facilitates C. pneumoniae infection-induced acceleration of atherosclerosis by inducing VSMC migration via focal adhesion kinase-mediated F-actin reorganization.NEW & NOTEWORTHY Toll-like receptor 2 (TLR2) and C-X-C motif chemokine receptor 4 (CXCR4) have both been shown to be involved in atherosclerosis. We demonstrate for the first time the presence of TLR2/CXCR4 coassociation during Chlamydia pneumoniae infection-induced atherosclerosis. Amazingly, blocking of both TLR2 and CXCR4 significantly retards and even almost reverses this infection-induced atherosclerosis. Our work reveals new mechanisms about C. pneumoniae infection-induced atherosclerosis and identifies potential new therapeutic targets for the prevention and treatment of atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Infecções por Chlamydophila/complicações , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores CXCR4/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Aterosclerose/microbiologia , Movimento Celular , Infecções por Chlamydophila/metabolismo , Infecções por Chlamydophila/microbiologia , Camundongos , Fosforilação
7.
Langmuir ; 36(36): 10794-10802, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32794401

RESUMO

Porous polymers are of great interest in potential energy storage and environmental remediation applications. However, traditional fabrication methods are either time-consuming or energy-consuming and deteriorate the mechanical strength of polymer materials. In this study, polymerization-induced phase separation was used to realize the template-free fabrication of superflexible macroporous polymers. Since the solvent is also used as a porogen, this method can be widely used to synthesize several porous polymers by carefully choosing the solvent and monomer. Compared to nonstructured polymers, the prepared macroporous polymers exhibited enhanced mechanical strength, superflexibility, multicompressibility, and bending properties. Along with hydrophobicity/oleophilicity and macroporous structures, the as-prepared porous polymers demonstrated controllable oil absorbability and release; furthermore, after infusing with lubrication liquid, these materials can be used as antiwaxing materials. The elastic porous polymers prepared using this simple and universal method show great potential for various applications, including controlled drug release, antiwaxing, and lubrication.

8.
Int J Med Microbiol ; 309(8): 151340, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31494039

RESUMO

Chlamydia pneumoniae (C. pneumoniae) infection is associated with the initiation and progression of atherosclerosis. The migration of vascular smooth muscle cell (VSMC) from the media to the intima is a key event in the development of atherosclerosis. Interleukin-17C (IL-17C) could enhance cell migration ability. The aim of our study is to investigate the role of IL-17C in C. pneumoniae infection-promoted VSMC migration, thereby possibly accelerating atherosclerosis. We firstly demonstrated that C. pneumoniae infection significantly increased IL-17C expression in VSMCs in the atherosclerotic lesion area from ApoE deficient mice. Our in vitro study further showed that IL-17C is required for C. pneumoniae infection-promoted VSMC migration, and its expression could be regulated by c-Fos through phosphorylating extracellular signal-regulated kinase (ERK). Unexpectedly, in the present study, we also found that IL-17C is critical for C. pneumoniae infection-induced c-Fos activation. c-Fos expression and activation induced by the exposure to recombinant IL-17C were markedly suppressed in the presence of the ERK inhibitor PD98059. These results suggest a possible positive feedback between c-Fos and IL-17C after C. pneumoniae infection. Taken together, our results indicate that C. pneumoniae infection promotes VSMC migration via c-Fos/IL-17C signaling.


Assuntos
Movimento Celular , Infecções por Chlamydophila/patologia , Interleucina-17/metabolismo , Miócitos de Músculo Liso/citologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais , Animais , Aterosclerose/microbiologia , Células Cultivadas , MAP Quinase Quinase Quinase 3/metabolismo , Masculino , Camundongos , Camundongos Knockout para ApoE , Miócitos de Músculo Liso/microbiologia , Fosforilação , Regulação para Cima
9.
Dev Growth Differ ; 61(7-8): 410-418, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31608440

RESUMO

Macular fibrosis is a vital obstacle of vision acuity improvement of age-related macular degeneration patients. This study was to investigate the effects of interleukin 2 (IL-2) on epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) synthesis and transforming growth factor ß2 (TGF-ß2) expression in retinal pigment epithelial (RPE) cells. 10 µg/L IL-2 was used to induce fibrosis in RPE cells for various times. Western blot was used to detect the EMT marker α-smooth muscle actin (α-SMA), ECM markers fibronectin (Fn) and type 1 collagen (COL-1), TGF-ß2, and the activation of the JAK/STAT3 and NF-κB signaling pathway. Furthermore, JAK/STAT3 and NF-κB signaling pathways were specifically blocked by WP1066 or BAY11-7082, respectively, and the expression of α-SMA, COL-1, Fn and TGF-ß2 protein were detected. Wound healing and Transwell assays were used to measure cell migration ability of IL-2 with or without WP1066 or BAY11-7082. After induction of IL-2, the expressions of Fn, COL-1, TGF-ß2 protein were significantly increased, and this effect was correlated with IL-2 treatment duration, while α-SMA protein expression did not change significantly. Both WP1066 and BAY11-7082 could effectively downregulate the expression of Fn, COL-1 and TGF-ß2 induced by IL-2. What's more, both NF-κB and JAK/STAT3 inhibitors could suppress the activation of the other signaling pathway. Additionally, JAK/STAT3 inhibitor WP1066 and NF-κB inhibitor BAY 11-7082 could obviously decrease RPE cells migration capability induced by IL-2. IL-2 promotes cell migration, ECM synthesis and TGF-ß2 expression in RPE cells via JAK/STAT3 and NF-κB signaling pathways, which may play an important role in proliferative vitreoretinopathy.


Assuntos
Células Epiteliais/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Interleucina-2/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Actinas/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Humanos , Janus Quinases/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Nitrilas/farmacologia , Piridinas/farmacologia , Epitélio Pigmentado da Retina/citologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia , Tirfostinas/farmacologia
10.
Biochem Biophys Res Commun ; 497(2): 742-748, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29462613

RESUMO

Migration of monocytes into the subendothelial layer of the intima is one of the critical events in early atherosclerosis. Chlamydia pneumoniae (C. pneumoniae) infection has been shown to promote monocyte transendothelial migration (TEM). However, the exact mechanisms have not yet been fully clarified. In this study, we tested the hypothesis that C. pneumoniae infection increases vascular endothelial cell (VEC) permeability and subsequent monocyte TEM through stimulating the tyrosine phosphorylation of vascular endothelial-cadherin (VE-cadherin). Here, we demonstrated that C. pneumoniae infection promoted monocyte TEM in a TEM assay possibly by increasing the permeability of a VEC line EA.hy926 cell as assessed by measuring the passage of FITC-BSA across a VEC monolayer. Subsequently, Western blot analysis showed that C. pneumoniae infection induced VE-cadherin internalization. Our further data revealed that Src-mediated VE-cadherin phosphorylation at Tyr658 was involved in C. pneumoniae infection-induced internalization of VE-cadherin, VEC hyperpermeability and monocyte TEM. Taken together, our data indicate that C. pneumoniae infection promotes monocyte TEM by increasing VEC permeability via the tyrosine phosphorylation and internalization of VE-cadherin in VECs.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar , Infecções por Chlamydophila/metabolismo , Chlamydophila pneumoniae/fisiologia , Monócitos/microbiologia , Migração Transendotelial e Transepitelial , Células Cultivadas , Infecções por Chlamydophila/microbiologia , Infecções por Chlamydophila/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/microbiologia , Endotélio Vascular/patologia , Interações Hospedeiro-Patógeno , Humanos , Monócitos/citologia , Monócitos/patologia , Fosforilação
12.
J Plant Res ; 130(6): 989-997, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28642987

RESUMO

Chromosome number and genome size are important cytological characters that significantly influence various organismal traits. We investigated chromosome number and genome size variation in 73 accessions belonging to four Colocasia species from China. Five different chromosome counts (2n = 26, 28, 38, 42, and 56) were found, the largest one representing a new record in Colocasia. The basic chromosome numbers are x = 13, 14, and 19, corresponding to 2x, 3x, and 4x cytotypes. Yunnan Province, China is considered the center of Colocasia polyploid origin. The 2C values in our accessions ranged from 3.29 pg in C. gigantea to 12.51 pg in C. esculenta. All species exhibit inter- and intraspecific chromosomal variation. Differences in DNA content among the Colocasia species seem to have occurred by chromosomal gain under similar habitats. Polyploidization also obviously contributes to 2C value variation.


Assuntos
Cromossomos de Plantas/genética , Colocasia/genética , Variação Genética , Tamanho do Genoma , Genoma de Planta/genética , China , Geografia , Cariótipo , Fenótipo , Folhas de Planta/genética , Raízes de Plantas/genética , Poliploidia
13.
Biol Trace Elem Res ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789899

RESUMO

Acute lung injury (ALI) poses a significant medical challenge due to its widespread occurrence and high mortality rates. Despite extensive efforts, current clinical interventions for ALI have shown limited success. Inflammation plays a central role within ALI progress, and boric acid (BA) has demonstrated anti-inflammatory properties both in vitro and in vivo. However, its potential to mitigate lipopolysaccharide (LPS)-induced ALI remains an area awaiting exploration in research. To bridge this research gap, we created a mouse model of ALI induced by intraperitoneal LPS injection. We employed a comprehensive set of evaluation criteria, including H&E staining, wet/dry ratio measurement, malondialdehyde (MDA)/superoxide dismutase (SOD) the oxidative stress-related biomarkers, assessment of alveolar edema, hemorrhage, inflammatory cell infiltration, and examination of thickened alveolar septum to quantify lung injury. Additionally, we measured inflammatory cytokine levels using ELISA and assessed Nrf2 and HO-1 expressions through western blotting and quantitative real-time PCR (RT-PCR). ER stress-related markers (GRP78, CHOP) were analyzed through western blot analysis. Our findings revealed that prophylactic treatment with BA effectively attenuated LPS-induced ALI, as supported by improved pathological alterations, decreased total protein concentration in bronchoalveolar lavage fluid (BALF), and reduced pulmonary edema. Furthermore, BA exhibited anti-inflammatory properties by suppressing inflammatory cytokines within the lung tissue. BA ingestion caused upregulation in SOD and a decrease in MDA contents in lung tissue homogenates. BA downregulated the levels of GRP78 and CHOP compared to the LPS group. Remarkably, BA also upregulated transcription and protein expression of Nrf2 and HO-1 compared to the LPS group. In conclusion, our study highlights BA's potential as a novel promising prophylactic agent for LPS-induced ALI, offering avenue for improving clinical management of this condition.

14.
Front Bioeng Biotechnol ; 12: 1378299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854856

RESUMO

Lung cancer is a malignant tumour with the highest incidence and mortality worldwide. Clinically effective therapy strategies are underutilized owing to the lack of efficient models for evaluating drug response. One of the main reasons for failure of anticancer drug therapy is development of drug resistance. Anticancer drugs face severe challenges such as poor biodistribution, restricted solubility, inadequate absorption, and drug accumulation. In recent years, "organ-on-a-chip" platforms, which can directly regulate the microenvironment of biomechanics, biochemistry and pathophysiology, have been developed rapidly and have shown great potential in clinical drug research. Lung-on-a-chip (LOC) is a new 3D model of bionic lungs with physiological functions created by micromachining technology on microfluidic chips. This approach may be able to partially replace animal and 2D cell culture models. To overcome drug resistance, LOC realizes personalized prediction of drug response by simulating the lung-related microenvironment in vitro, significantly enhancing therapeutic effectiveness, bioavailability, and pharmacokinetics while minimizing side effects. In this review, we present an overview of recent advances in the preparation of LOC and contrast it with earlier in vitro models. Finally, we describe recent advances in LOC. The combination of this technology with nanomedicine will provide an accurate and reliable treatment for preclinical evaluation.

15.
CNS Neurosci Ther ; 30(4): e14519, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37905694

RESUMO

BACKGROUND: The microbiota-gut-brain axis plays a critical role in neuropsychiatric disorders, particularly anxious depression, and attracts more attention gradually. Zhi Zi Chi decoction (ZZCD) consisting of Gardenia jasminoides J. Ellis and Glycine max (L.) Merr, is a classic formula in clinic and widely applied in anxiety and depression treatment. However, the underlying mechanisms of regulating microbiota-gut-brain axis in the treatment of anxious depression by oral administration of ZZCD remain elusive. MATERIALS AND METHODS: In this project, we clarified the origin and preparation methods of the Gardenia jasminoides J. Ellis and Glycine max (L.) Merr and examined the chemical ingredients of ZZCD by liquid chromatograph mass spectrometer. Then, corticosterone combined with chronic restraint stress was applied to establish an anxious depression model. After treated with ZZCD standard decoction, based on enzyme-linked immunosorbent assay (ELISA), 16S rRNA technology, high-throughput sequencing, quantitative RT-PCR and fecal microbiota transplantation (FMT), the multiple associations between nucleus accumbens and intestinal flora in anxious depression mice were determined to clarify the mechanism of ZZCD in the treatment of anxiety and depression disorder. RESULTS: We found various substances with antidepressant and antianxiety properties in ZZCD such as rosiridin and oleanolic acid. ZZCD could alleviate depressive and anxiety behaviors in anxious depression mice via regulating the disturbance of gut microbiota. Meanwhile, the bioactive compounds of ZZCD might directly active on neurodevelopment and neuroimmune-related genes. Furthermore, the secretion of prolactin and estrogen, and interfering with mitogen-activated protein kinase (MAPK) and tumor necrosis factor (TNF) signaling pathways were mainly involved in the multi-target therapeutic effects of ZZCD against anxiety and depression. CONCLUSIONS: These findings suggested that ZZCD exerts antidepressant effects pleiotropically through modulating the microbiota-gut-brain.


Assuntos
Medicamentos de Ervas Chinesas , Gardenia , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Gardenia/química , Corticosterona , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Eixo Encéfalo-Intestino , RNA Ribossômico 16S , Sementes/química , Antidepressivos
16.
Redox Biol ; 73: 103216, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820983

RESUMO

Long-lived lens fiber cells require a robust cellular protective function against oxidative insults to maintain their hemostasis and viability; however, the underlying mechanism is largely obscure. In this study, we unveiled a new mechanism that protects lens fiber cells against oxidative stress-induced cell death. We found that mechano-activated connexin (Cx) hemichannels (HCs) mediate the transport of glutathione (GSH) into chick embryonic fibroblasts (CEF) and primary lens fiber cells, resulting in a decrease in the accumulation of intracellular reactive oxygen species induced by both H2O2 and ultraviolet B, providing protection to lens fiber cells against cell apoptosis and necrosis. Furthermore, HCs formed by both homomeric Cx50 or Cx46 and heteromeric Cx50/Cx46 were mechanosensitive and could transport GSH into CEF cells. Notably, mechano-activated Cx50 HCs exhibited a greater capacity to transport GSH than Cx46 HCs. Consistently, the deficiency of Cx50 in single lens fiber cells led to a higher level of oxidative stress. Additionally, outer cortical short lens fiber cells expressing full length Cxs demonstrated greater resistance to oxidative injury compared to central core long lens fibers. Taken together, our results suggest that the activation of Cx HCs by interstitial fluid flow in cultured epithelial cells and isolated fiber cells shows that HCs can serve as a pathway for moving GSH across the cell membrane to offer protection against oxidative stress.


Assuntos
Conexinas , Glutationa , Cristalino , Estresse Oxidativo , Conexinas/metabolismo , Conexinas/genética , Glutationa/metabolismo , Animais , Cristalino/metabolismo , Cristalino/citologia , Espécies Reativas de Oxigênio/metabolismo , Embrião de Galinha , Transporte Biológico , Apoptose , Fibroblastos/metabolismo , Peróxido de Hidrogênio/metabolismo , Células Cultivadas
17.
J Plant Res ; 126(5): 597-604, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23508340

RESUMO

Chromosome numbers and karyotypes of 26 Ophiopogon species, 2 Liriope species and 5 Peliosanthes species of the family Liliaceae from Southwest China, were investigated. The study revealed a detailed picture of chromosome features and their pattern of karyotype variation in Ophiopogoneae. Karyotype asymmetry in different species and different populations of the same species varied greatly due to different locality conditions. Our analyses may support the separately monophyly of Ophiopogon, Liriope and Peliosanthes.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Cariótipo , Liliaceae/genética , Evolução Biológica , China , Cariotipagem , Poliploidia
18.
World J Gastroenterol ; 29(1): 75-95, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36683713

RESUMO

Nonalcoholic fatty liver disease (NAFLD), a leading chronic disease worldwide, affects approximately a quarter of the global population. Nonalcoholic steatohepatitis (NASH) is an advanced form of NAFLD and is more likely to progress to liver fibrosis than simple steatosis. NASH is also identified as the most rapidly growing cause of hepatocellular carcinoma. Although in the past decade, several phase II/III clinical trials have shown promising results in the use of novel drugs targeting lipid synthase, farnesoid X receptor signaling, peroxisome proliferator-activated receptor signaling, hepatocellular injury, and inflammatory signaling, proven pharmaceutical agents to treat NASH are still lacking. Thus, continuous exploration of the mechanism underlying the pathogenesis of NAFLD and the identification of novel therapeutic targets remain urgent tasks in the field. In the current review, we summarize studies reported in recent years that not only provide new insights into the mechanisms of NAFLD development but also explore the possibility of treating NAFLD by targeting newly identified signaling pathways. We also discuss evidence focusing on the intrahepatic targets involved in the pathogenesis of NAFLD as well as extrahepatic targets affecting liver metabolism and function.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/patologia , Cirrose Hepática/metabolismo , Transdução de Sinais , Neoplasias Hepáticas/patologia , Fígado/patologia
19.
iScience ; 26(3): 106114, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36852280

RESUMO

Cataract is the leading cause of blindness worldwide. Here, we reported a potential, effective therapeutic mean for cataract prevention and treatment. Gap junction communication, an important mechanism in maintaining lens transparency, is increased by protein kinase A (PKA). We found that PKA activation reduced cataracts induced by oxidative stress, increased gap junctions/hemichannels in connexin (Cx) 50, Cx46 or Cx50 and Cx46 co-expressing cells, and decreased reactive oxygen species (ROS) levels. However, ROS reduction was shown in wild-type, Cx46 and Cx50 knockout, but not in Cx46/Cx50 double KO lens. In addition, PKA activation protects lens fiber cell death induced by oxidative stress via hemichannel-mediated glutathione transport. Connexin deletion increased lens opacity induced by oxidative stress associated with reduction of anti-oxidative stress gene expression. Together, our results suggest that PKA activation through increased connexin channels in lens fiber cell decreases ROS levels and cell death, leading to alleviated cataracts.

20.
Plant Commun ; 4(1): 100427, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36056558

RESUMO

Pseudogenes are important resources for investigation of genome evolution and genomic diversity because they are nonfunctional but have regulatory effects that influence plant adaptation and diversification. However, few systematic comparative analyses of pseudogenes in closely related species have been conducted. Here, we present a turnip (Brassica rapa ssp. rapa) genome sequence and characterize pseudogenes among diploid Brassica species/subspecies. The results revealed that the number of pseudogenes was greatest in Brassica oleracea (CC genome), followed by B. rapa (AA genome) and then Brassica nigra (BB genome), implying that pseudogene differences emerged after species differentiation. In Brassica AA genomes, pseudogenes were distributed asymmetrically on chromosomes because of numerous chromosomal insertions/rearrangements, which contributed to the diversity among subspecies. Pseudogene differences among subspecies were reflected in the flavor-related glucosinolate (GSL) pathway. Specifically, turnip had the highest content of pungent substances, probably because of expansion of the methylthioalkylmalate synthase-encoding gene family in turnips; these genes were converted into pseudogenes in B. rapa ssp. pekinensis (Chiifu). RNA interference-based silencing of the gene encoding 2-oxoglutarate-dependent dioxygenase 2, which is also associated with flavor and anticancer substances in the GSL pathway, resulted in increased abundance of anticancer compounds and decreased pungency of turnip and Chiifu. These findings revealed that pseudogene differences between turnip and Chiifu influenced the evolution of flavor-associated GSL metabolism-related genes, ultimately resulting in the different flavors of turnip and Chiifu.


Assuntos
Brassica napus , Brassica rapa , Brassica , Brassica rapa/genética , Brassica napus/genética , Pseudogenes/genética , Brassica/genética , Genômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA